Лекция 3. Об инвариантных подпространствах

Пусть есть линейный оператор $A : V \rightarrow V$.
Как построить инвариантные подпространства?

1) Кероператор $\ker A = \{ x \in V \mid A \cdot x = 0 \} =: U$

 \Rightarrow $x \in U \Rightarrow A \cdot x = 0 \in U$. Инвариантно.

Дано $\ker A^2 = \{ x \in V \mid A^2 \cdot x = 0 \} =: U$

 $x \in U \Rightarrow A \cdot x = 0$, т.к. в обозначении 0, но

 $A^2 (A \cdot x) = A \cdot A^2 \cdot x = 0 \Rightarrow A \cdot x \in U$. Инвариантно.

Объяснить, пусто $U = \ker f(A)$. Существует ли инвариантно?

 $x \in U$, то $A \cdot x \in U$ - по определению

 $f(A) \cdot A \cdot x = A \cdot f(A) \cdot x = 0$ - также $\in U$.

(даже, во $f(A) \cdot A = A \cdot f(A)$?)

Например $V = k [x]$, $A = \frac{d}{dx}$.

$\ker A = k \cdot 1$ - константа

$\ker A^2 = \{ f = ax + bx \}$. Минимальное степень ≤ 1

$\ker A^3 = \{ f = ax^2 + bx + cx \}$. Минимальная степень ≤ 2.

\Rightarrow Ни инвариантных подпространств, естественно!

2) Другой конечный пример: рассмотрим $Im A = \{ x \in V \mid x = Ay \}$

 где $x \in V$.
Είναι: \(x = A y \Rightarrow A x = A (A y) \in \text{Im} A \).

\[\text{Im} A \text{ } \text{ή} \text{ } \text{εμφανίζοντα ενσωματωμένο} \ A. \]

Συναρτηση \(U = \text{Im} f(A) = \{ x \in V | x = f(A) y \} \) \(\text{και} \ y \in V \).

Συναρτηση \(A x = A f(A) y = f(A) (A y) \in \text{Im} f(A) \)

\[\text{εμφανίζοντα} \).

3) \[\text{Είναι} \ \ker (A^2 - E) \cap \text{Im} (A^3 + 3A) \text{ } \text{εμφανίζοντα} \]

\[U := \ker (A^2 - E) \cap \text{Im} (A^3 + 3A) \text{ } \text{εμφανίζοντα} \]

Ως **Εισαγωγή**: \(U_1, U_2 \) \(\text{εμφανίζοντα} \), \(\text{ο} \)

\[U_1 + U_2, \ U_1 \cap U_2 \text{ } \text{εμφανίζοντα} \]

\[\text{Δεικτικό: } x \in U_1 + U_2 \Leftrightarrow x = x_1 + x_2 \text{ } \text{και} \]

\[x_1 \in U_1 \]

\[A x = A x_1 + A x_2 \Leftrightarrow A x_1 \in U_1 \text{ } \text{εμφανίζοντα} \]

\[\text{και} \]

\[A x_2 \in U_2 \text{ } \text{εμφανίζοντα} \]

\[\text{Είναι} \ x \in U_1 \cap U_2 \text{ } \text{εμφανίζοντα} \]

\[A x \in U_1 \cap U_2 \Rightarrow A x \in U_1 \cap U_2. \]

3) \[\text{Είναι} \ \ker (A^2 - E) \cap \text{Span} \{ v_1, v_2, v_3 \} \text{ } \text{εμφανίζοντα} \]

Περιθαεί \(\ker (A^2 - E) \cap \text{Span} \{ v_1, v_2, v_3 \} \).

\[\text{Αν} \lambda_1, \lambda_2, \lambda_3 \text{ } \text{τότε} \]

\[\ker (A^2 - E) \cap \text{Span} \{ v_1, v_2, v_3 \} \]

\[\text{εμφανίζοντα} \]

\[\text{Δείκτικο: } A x = (\lambda_1 v_1 + \lambda_2 v_2) + (\lambda_3 v_3) \text{ } \text{εμφανίζοντα} \]

\[\text{εμφανίζοντα} \]
1. Линейные независимые векторы образуют
"линейное подпространство" \(\mathbb{R}^3 \).

Пусть \(v_1, v_2, v_3 \) — собственные векторы \(A \) с соответствующими значениями \(\lambda_1, \lambda_2, \lambda_3 \).

Тогда, если \(U = \text{ Автономное }, \quad x = d_1 v_1 + d_2 v_2 + d_3 v_3 \in U \)

и \(d_i \neq 0 \) (т.e.)

то \(\text{span} (v_1, v_2, v_3) \subset U \).

Доказательство. Пусть \(x \in U \), то

\[
x = d_1 v_1 + d_2 v_2 + d_3 v_3 \in U
\]
\[
Ax = (\lambda_1 d_1) v_1 + (\lambda_2 d_2) v_2 + (\lambda_3 d_3) v_3 \in U
\]
\[
A^2 x = (\lambda_1^2 d_1) v_1 + (\lambda_2^2 d_2) v_2 + (\lambda_3^2 d_3) v_3 \in U
\]

следовательно,

\[
(Ax - \lambda_1 x) = 0 + d_2 (\lambda_2 - \lambda_1) v_2 + d_3 (\lambda_3 - \lambda_1) v_3 \in U
\]
\[
(A^2 x - \lambda_1 Ax) = 0 + d_2 (\lambda_2^2 - \lambda_1^2) v_2 + d_3 (\lambda_3^2 - \lambda_1^2) v_3 \in U
\]

следовательно,

\[
(A^2 - \lambda_1 A)x = 0 + d_2 (\lambda_2^2 - \lambda_1^2) v_2 + d_3 (\lambda_3^2 - \lambda_1^2) v_3 \in U
\]

Заметим, что

\[
(A^2 - (\lambda_1^2) A + \lambda_1 k_2 E)x = d_1 (\lambda_3^2 - (\lambda_1^2) k_2) + d_2 k_2 \cdot v_3
\]

тогда \(f(A) \) вектор \(f(A) \) является \(\lambda_3 \).

Тогда \(\lambda_3 \neq 0 \)

следовательно \(v_3 \in U \). Аналогично \(v_2 \in U, v_2 \in U \).
Доказать, что \(A \cdot A^{−1} = A^{k} \cdot v = \ldots = b_{1} A^{k−1} \cdot v + \ldots + b_{k} \cdot v \in U \) и \(f(A) \cdot v = 0 \), откуда \(A \in U \).
Минимальное многочлен ортогонального оператора.

Определение. Пусть есть ортогональный оператор \(A \) на \(V \).

Многочлен \(\mu(t) \) называется минимальным многочленом \(A \), если он ассоциирует с \(A \) и имеет наименьшую степень среди многочленов, которые будут вписать в диагональ коэффициенты \(\mu(t) \) равен 1.

Действительно, если множество \(V \) конечномерное, то мин. многочлен существует и его степень не больше размерности \(V \) (ввиду теоремы Гамильтона-Кэли).

Предложение: Если многочлен \(f(t) \) делит \(\mu(t) \) — минимальный многочлен для \(A \), \(\deg f = k \), то в \(V \) существует инвариантное подпространство размерности \(\leq k \).

Док. Заменим \(\mu(t) = f(t) \cdot g(t) \).

Тогда \(g(A) \neq 0 \) (поскольку в самом минимальном многочлене меньшей степени), поэтому

\[g(A)^n \neq 0. \]

При этом \(\mu(A) = f(A)g(A) = 0. \)

Пусть \(\mathcal{U} = \text{span}(V, A V, \ldots, A^{n-1} V) \).

Как и установлено, \(\mathcal{U} \subset \mathcal{U} \) — инвариантное относительно \(A \).

При этом \(\dim \mathcal{U} \leq k. \)
Если \(k = \mathbb{R} \), и \(A : V \to V \) линейный оператор, \(f(z) = z^3 - \frac{3}{2} z^2 - \frac{1}{2} z - 1 \) — многочлен, то у \(A \) существует эллиптический квадратичный инвариантное подпространство.

(Это — известная теорема, которую мы будем использовать в дальнейшем).

Действительно, пусть \(\mu(z) \) минимальный многочлен для \(\lambda \). Разложим его на неприводимые множители.

Таким образом, на \(f^k - 1 \) и на \(2 \) степени.

Если \(f \) — компонент нулевой степени \(\mu(x) \), то \(f = \mu \) — то есть множение \(\mu \) на \(f \) — линейное отношение, который дает \(\mu(x) \).

Предложение. \(\mu(x) \) дает любой ангулярный множитель для \(A \).

Док. Пусть \(f(A) = 0 \), \(\mu(A) = 0 \). Пусть \(f = \mu \) с остатком: \(f = q \mu \), \(q \) — многочлен, \(\deg q < \deg \mu \).

Если \(\deg q = 0 \), то \(r(A) = f(A) = q(A) \cdot \mu(A) = 0 - 0 = 0 \).

Получается ангулярный нулевой степень, тем \(\mu \) — приведение.

Следующий результат довольно "теорема Гаусса", но оно важное и необязательно в разные приложениях.
Гипотеза. Пусть минимальным множеством \(\mu(t) \) в \(A \) является \(\text{ker } \mu(t) = f(t) \cdot g(t) \), \(\text{HOD } (f, g) = 1 \).

Тогда \(V = V_1 + V_2 \), где \(V_1 = \text{Im } f(A) = \text{ker } g(A) \)
и \(V_2 = \text{Im } g(A) = \text{ker } f(A) \).

Док: Множество \(\text{HOD } (f, g) = 1 \) \(\Rightarrow \exists p, q : \)
\(p(t) \cdot f(t) + q(t) \cdot g(t) = 1 \). (*)

Лемма 1. \(\text{Ker } f(A) \cap \text{Ker } g(A) = 0 \)

Действительно, \(x \in \text{Ker } f(A) \cap \text{Ker } g(A) \), то

\[x = f(A) \cdot f(A)x + g(A) \cdot g(A)x = 0 + 0 = 0. \]

Лемма 2. \(\text{Im } f(A) + \text{Im } g(A) = V \)

Действительно, для любого \(x \in V \) можно записать

\[x = f(A) \cdot f(A)x + g(A) \cdot g(A)x \]

и

\[\text{Im } f(A) \cup \text{Im } g(A) \] .

Лемма 3. \(\text{Ker } g(A) \supset \text{Im } f(A) \); \(\text{Ker } f(A) \supset \text{Im } g(A) \).

Да \(g(A) \cdot f(A) = \mu(A) = 0 \) \(\Rightarrow g(A) \cdot f(A)x = 0 \) \(\Rightarrow g(A) \cdot \text{Im } f(A) = 0 \).

Дано \(f(A) \cdot \text{Im } g(A) = 0 \).

Следовательно, \(\text{Im } f(A) \cap \text{Im } g(A) = 0 \) (из леммы 1).
Таким образом

\[V = \text{Im } f(A) + \text{Im } g(A) \quad (\ast \ast) \]

Лемма 4. Ker \(g(A) \) = Im \(f(A) \).

Тогда \(0 \in \ker g(A) \). Используя (\ast \ast) преобразуем

\[z = x + y. \quad \text{Очевидно } x \in \text{Im } f(A) \cap \ker g(A) \]

\[y \in \ker g(A) \]

\[\Rightarrow y = z - x \in \ker g(A) \]

Но \(y \in \text{Im } g(A) \in \ker f(A) \Rightarrow y \in \ker g(A) \cap \ker f(A) = 0 \)

То есть \(y = 0 \Rightarrow z \in \text{Im } f(A) \Rightarrow \ker g(A) = \text{Im } f(A) \).

Аналогично \(\ker f(A) = \text{Im } g(A) \). Теорема доказана.

Замечание к задачам вычислений.

Задача номера 100 решение.

Замечаем

\[
\begin{pmatrix}
5 & 6 & 0 \\
1 & 5 & 6 \\
0 & 1 & 6
\end{pmatrix} = d_n \quad \text{получаем на основе}
\]

\[d_n = 5d_{n-1} - 6 \]

\[
\begin{pmatrix}
1 & 6 & 0 \\
0 & 5 & 6 \\
0 & 0 & 1
\end{pmatrix} = 5d_{n-1} - 6d_{n-2}
\]

Как найти \(d_{100} \)?
Рассмотрим \mathbb{R}^{100} с 100 неизвестными $x_1, x_2, \ldots, x_{100}$.

Имеем уравнения:

\[x_{100} - 5x_{99} + 6x_{98} = 0 \]
\[x_{99} - 5x_{98} + 6x_{92} = 0 \]
\[x_3 - 5x_2 + x_1 = 0 \]

- 98 уравнений, минимо независимых \Rightarrow

Понятие решения 2-ю задачи.

Если есть 2 независимых решения, то моде есть не менее трех

Здесь и везде для $x_k = 2^k$, $k = 1, 2, \ldots, 100$;

и $x_k = 3^k$, $k = 1, 2, \ldots, 100$.

Общее решение:

\[x_k = a \cdot 2^k + b \cdot 3^k \]

Для a, b имеем линейные:

\[d_n = 3 \cdot 3^k - 2 \cdot 2^k = 3^{k+1} - 2^{k+1}. \]