15.1. Let G be a locally compact group. As was shown in the lectures, $L^1(G)$ is a Banach algebra under convolution.

(a) Show that $L^1(G)$ is a Banach *-algebra w.r.t. the involution $f^*(x) = \overline{f(x^{-1})}\Delta(x^{-1})$ $(f \in L^1(G), x \in G)$.

(b) Show that $L^1(G)$ (equipped with the standard L^1 -norm and with the involution defined in (a)) is not a C^* -algebra unless $G = \{e\}$.

(c) Show that $L^{1}(G)$ is commutative if and only if G is commutative.

(d) Show that $L^1(G)$ is unital if and only if G is discrete.

(e) Show that the Fourier transform $\mathscr{F}: L^1(G) \to \left(\bigoplus_{\sigma \in \widehat{G}} \mathscr{B}(E^{\sigma})\right)_{\infty}$ is a *-algebra homomorphism.

15.2. Let G be a locally compact group, and let $p, q \in (1, +\infty)$ satisfy 1/p + 1/q = 1. Show that, for each $f \in L^p(G)$ and $g \in L^q(G)$, the convolution f * Sg (where $(Sg)(x) = g(x^{-1})$) is defined everywhere on G, belongs to $C_0(G)$, and that $||f * Sg||_{\infty} \leq ||f||_p ||g||_q$.

15.3. (In this exercise, we use the notation introduced in Sheet 13.) Let G be a compact group. For each $\sigma \in \widehat{G}$, let $p_{\sigma} = d_{\sigma}\chi_{\sigma}$, where $d_{\sigma} = \dim E^{\sigma}$.

(a) Calculate $\pi_S^{\sigma} * \pi_T^{\tau}$ (where $S \in \text{End}(E^{\sigma}), T \in \text{End}(E^{\tau})$). Calculate $p_{\sigma} * p_{\tau}$.

(b) Show that $\mathscr{R}_{\sigma}(G)$ is a two-sided ideal of $L^1(G)$, and that $\mathscr{R}_{\sigma}(G)$ is *-isomorphic to the matrix algebra $M_{d_{\sigma}}(\mathbb{C})$. What is the identity of $\mathscr{R}_{\sigma}(G)$?

15.4. Show that (a) $C^n[a,b]$ $(n \ge 1)$ and (b) $\mathscr{A}(\bar{\mathbb{D}})$ are Banach *-algebras, but are not C^* -algebras. (Recall that the involution on $C^n[a,b]$ is given by $f^*(t) = \overline{f(t)}$, while the involution on $\mathscr{A}(\bar{\mathbb{D}})$ is given by $f^*(z) = \overline{f(z)}$.)

15.5. Let A be a normed algebra, and let (e_{α}) be a bounded approximate identity in A. Show that (a) if B is a normed algebra and $\varphi \colon A \to B$ is a continuous homomorphism such that $\overline{\varphi(A)} = B$, then $(\varphi(e_{\alpha}))$ is a bounded approximate identity in B;

(b) if A is a normed *-algebra, then $(e_{\alpha}^*e_{\alpha})$ is a bounded approximate identity in A.

15.6. Let X be a locally compact Hausdorff topological space.

- (a) Construct a bounded approximate identity in $C_0(X)$.
- (b) Show that $C_0(X)$ has a sequential bounded approximate identity if and only if X is σ -compact.

15.7. Let H be a Hilbert space.

- (a) Construct a bounded approximate identity in $\mathcal{K}(H)$.
- (b) Show that $\mathscr{K}(H)$ has a sequential bounded approximate identity if and only if H is separable.

15.8. Let G be a locally compact group, and let (u_i) be a Dirac net in $L^1(G)$. Identify $L^1(G)$ with a subspace of $C_0(G)^*$ via $f \mapsto I_f$, where $I_f(g) = \int_G fg \, d\mu \ (g \in C_0(G))$. Show that (u_i) converges to the evaluation functional $g \mapsto g(e)$ (the "Dirac δ -function") w.r.t. the weak* topology on $C_0(G)^*$.

15.9. Let $\mathscr{P}(\mathbb{T})$ denote the closure of $\mathbb{C}[z]$ in $C(\mathbb{T})$, where z is the coordinate on \mathbb{C} . Recall that the disk algebra $\mathscr{A}(\bar{\mathbb{D}})$ consists of those $f \in C(\bar{\mathbb{D}})$ that are holomorphic on the disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. Show that each $f \in \mathscr{P}(\mathbb{T})$ uniquely extends to $\tilde{f} \in \mathscr{A}(\bar{\mathbb{D}})$, and that $\sigma_{\mathscr{P}(\mathbb{T})}(f) = \tilde{f}(\bar{\mathbb{D}})$.

15.10. Let $c_{00} \subset c_0$ denote the ideal of finite sequences (i.e., of those sequences $a = (a_n)$ such that $a_n = 0$ for all but finitely many $n \in \mathbb{N}$). Prove that c_{00} is not contained in a maximal ideal of c_0 .

15.11. Let $A = \{f \in C[0,1] : f(0) = 0\}$, and let $I = \{f \in A : f \text{ vanishes on a neighborhood of } 0\}$. Prove that I is not contained in a maximal ideal of A. **15.12.** A commutative algebra A is *semisimple* if the intersection of all maximal modular ideals of A (the *Jacobson radical* of A) is $\{0\}$. Show that every homomorphism from a Banach algebra to a commutative semisimple Banach algebra is continuous.

15.13. Describe the maximal spectrum and the Gelfand transform for the algebras (a) $C^n[0,1]$; (b) $\mathscr{A}(\bar{\mathbb{D}})$; (c) $\mathscr{P}(\mathbb{T})$; (d) $\ell^1(\mathbb{Z})$.

15.14. Let $A(\mathbb{T}) = \{f \in C(\mathbb{T}) : \sum_{n \in \mathbb{Z}} |\hat{f}(n)| < \infty\}$, where $\hat{f}(n)$ is the *n*th Fourier coefficient of f w.r.t. the trigonometric system (e_n) on \mathbb{T} (i.e., $e_n(z) = z^n$ for all $z \in \mathbb{T}$ and $n \in \mathbb{Z}$). Prove that for each $f \in A(\mathbb{T})$ we have $\sigma_{A(\mathbb{T})}(f) = f(\mathbb{T})$.

15.15. Construct a commutative Banach algebra A such that for each $t \in [0, 1]$ there exists a character χ of A with $\|\chi\| = t$. (Clearly, A cannot be unital, see the lectures.)

15.16. (a) Does there exist a norm and an involution on $C^{1}[a, b]$ making it into a C^{*} -algebra?

- (b) Does there exist a norm and an involution on $\mathscr{A}(\overline{\mathbb{D}})$ making it into a C*-algebra?
- (c) Does there exist a norm and an involution on $\ell^1(\mathbb{Z})$ making it into a C^* -algebra? *Remark.* In 2.4 (a,b,c), we do not assume that the new norm is equivalent to the original norm.

15.17. Let X be a locally compact Hausdorff topological space, and let X_+ denote the one-point compactification of X. For each $f \in C_0(X)$, define $f_+: X_+ \to \mathbb{C}$ by $f_+(x) = f(x)$ for $x \in X$ and $f_+(\infty) = 0$. Prove that f_+ is continuous, and that the map $C_0(X)_+ \to C(X_+)$, $f + \lambda 1_+ \mapsto f_+ + \lambda$, is an isometric *-isomorphism. (Here we assume that $C_0(X)_+$ is equipped with the canonical C^* -norm extending the supremum norm on $C_0(X)$.)

15.18. Let X be a topological space, let $\beta X = \operatorname{Max} C_b(X)$, and let $\varepsilon \colon X \to \beta X$ take each $x \in X$ to the evaluation map $\varepsilon_x \colon C_b(X) \to \mathbb{C}$ given by $\varepsilon_x(f) = f(x)$.

(a) Prove that $(\beta X, \varepsilon)$ is the Stone-Čech compactification of X (i.e., for each compact Hausdorff topological space and each continuous map $f: X \to Y$ there exists a unique continuous map $\tilde{f}: \beta X \to Y$ such that $\tilde{f} \circ \varepsilon = f$).

(b) Prove that $\varepsilon(X)$ is dense in βX .

(c) Prove that ε is a homeomorphism onto $\varepsilon(X)$ if and only if X is completely regular.

15.19. Let A and B be C^* -algebras. Show that if B is commutative, then each homomorphism from A to B is a *-homomorphism. Does the above result hold without the commutativity assumption?

15.20. Let $A = C^{1}[0, 1]$. (a) Is A hermitian? (b) Does the identity ||a|| = r(a) hold in A?

15.21. Let $A = \mathscr{A}(\overline{\mathbb{D}})$. (a) Is A hermitian? (b) Does the identity ||a|| = r(a) hold in A?

15.22. (a) Let *H* be a *-module over a Banach *-algebra *A*. Assume that $\operatorname{End}_A(H) = \mathbb{C}\mathbf{1}_H$. Show that *H* is irreducible.

(b) Does (a) hold if H is a Banach A-module (but is not necessarily a *-module)?