
29.11.2022 Harmonic analysis & Reps Exercises for Lectures 12-13

Throughout this sheet, G is a compact group equipped with a normalized Haar measure µ. Let Ĝ denote the
unitary dual of G, i.e., the set of unitary equivalence classes of unitary irreducible representations of G. For each
σ ∈ G, choose a representation (Eσ, πσ) in σ. Recall (see the lectures) that dimEσ < ∞ for each σ. The algebra
of representative functions on G is denoted by R(G). For each finite-dimensional continuous representation (E, π) of
G and each T ∈ End(E), we define πT ∈ R(G) by πT (x) = Tr(Tπ(x)). The image of the map End(Eσ) → R(G),
T 7→ πσ

T , is denoted by Rσ(G).
Using the fact that every finite-dimensional continuous representation of G is unitarizable (see the lectures), and

combining this with Exercise 11.2 (b), we will often identify Ĝ with the set of (algebraic) equivalence classes of
finite-dimensional continuous irreducible representations of G.

Definition 13.1. A function f ∈ L2(G) is central if f(xyx−1) = f(y) for all x ∈ G and almost all y ∈ G. Note that
the equality actually holds for all x, y ∈ G provided that f is continuous.

The space of all central functions in L2(G) (resp., in C(G), in R(G), . . . ) will be denoted by ZL2(G) (resp.,
ZC(G), ZR(G), . . . ).

13.1. Interpret ZL2(G), ZC(G), etc., as the submodule of invariants with respect to a suitable action
of G on L2(G), C(G), etc.

Definition 13.2. Given a finite-dimensional continuous representation (E, π) of G, the character of π is a function
χπ ∈ R(G) given by χπ(x) = Trπ(x). (In other words, χπ = π1E

, see above.) Observe that χπ ∈ ZR(G).

13.2. Prove that (a) χπ⊕τ = χπ + χτ ; (b) χπ⊗τ = χπχτ ; (c) χπ̄ = χπ.

For each σ ∈ Ĝ, let χσ = χπσ .

13.3. Show that
(a) ZR(G) is dense in ZC(G) and in ZL2(G);
(b) ZRσ(G) = Cχσ;

(c) {χσ : σ ∈ Ĝ} is a vector space basis of ZR(G) and an orthonormal basis of ZL2(G).

13.4. Let π be a finite-dimensional continuous representation of G, and let π =
⊕

σ mσπ
σ be the

decomposition of π into irreducibles (where mσ ∈ Z>0 is the multiplicity of σ in π). Show that
(a) mσ = ⟨χπ |χσ⟩ (the inner product in L2(G));
(b) ∥χπ∥22 =

∑
m2

σ;
(c) π is irreducible iff ∥χπ∥2 = 1;
(d) two finite-dimensional continuous representations π and τ are isomorphic iff χπ = χτ .

13.5. Let σ, τ ∈ Ĝ. Show that σ⊗ τ contains the one-dimensional trivial representation iff τ ∼= σ̄.

13.6. Let F ⊂ Ĝ be a subset containing the one-dimensional trivial representation, closed under
complex conjugation and having the property that, for each σ, τ ∈ F , all irreducible subrepresenta-
tions of σ⊗ τ belong to F . Let RF (G) =

∑
σ∈F Rσ(G) (in other words, RF (G) is the linear span of

matrix elements of representations belonging to F ). Show that
(a) RF (G) is a unital ∗-subalgebra of R(G);

(b) if F separates the points of G, then F = Ĝ.

13.7. Let π be a finite-dimensional continuous representation of G. Prove that the following condi-
tions are equivalent:

(i) π is faithful;

(ii) for each σ ∈ Ĝ, πσ is isomorphic to a subrepresentation of π⊗k ⊗ π̄⊗ℓ for some k, ℓ ∈ Z>0;
(iii) R(G) is generated as a ∗-algebra by the matrix elements of π;
(iv) R(G) is generated as an algebra by the matrix elements of π and by (det ◦ π)−1.
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13.8. Show that the following conditions are equivalent:

(i) G is topologically isomorphic to a Lie group;
(ii) G has a finite-dimensional faithful continuous representation;
(iii) R(G) is a finitely generated algebra.

(You may use the fact that a closed subgroup of a Lie group is a smooth submanifold.)

13.9. For each n ∈ Z>0, let Ln denote the space of complex homogeneous polynomials of degree n
in two variables. Define a representation πn of SU(2) on Ln by (πn(x)f)(u) = f(ux) (here ux stands
for the product of the row u = (u1, u2) ∈ C2 by the 2× 2 matrix x ∈ SU(2)).
(a) Prove that πn is irreducible.
(b) Calculate the restriction of the character χn = χπn to the diagonal subgroup T of SU(2).
(c) Prove that the character of πm⊗πn (where m 6 n) is equal to

∑m
k=0 χm+n−2k.

(d) Deduce that ŜU(2) = {πn : n ∈ Z>0}.
Hints. (a) Consider the restriction of πn to T and show that each invariant subspace E ⊂ Ln

is spanned by monomials. Then act by a nondiagonal matrix x ∈ SU(2) on a monomial ui
1u

j
2 ∈ E.

(c) A central function on SU(2) is completely determined by its restriction to T.
(d) Use (c) and Exercise 13.6.

13.10. Suppose that the topology on G has a countable base. Prove that Ĝ is at most countable.

Define the Fourier cotransform F̌ :
⊕

σ∈Ĝ End(Eσ) → R(G) by T ∈ End(Eσ) 7→ πσ
T ∈ R(G). Since, for each

σ ∈ Ĝ, F̌ maps End(Eσ) isomorphically onto Rσ(G), and since R(G) =
⊕

σ Rσ(G) (see the lectures), it follows that
F̌ is an isomorphism.

13.11. Construct a vector space isomorphism (
⊕

σ End(E
σ))∗ ∼=

∏
σ End(E

σ) (where the star denotes
the algebraic dual space).

Let F = (F̌ )∗ : R(G)∗ →
∏

σ End(E
σ) be the (algebraic) dual of F̌ . Morally, the elements of R(G)∗ should be

interpreted as “generalized distributions” on G, and F is the Fourier transform of generalized distributions1.

13.12. Define i : L1(G) → R(G)∗ by i(f)(g) =
∫
G
fg dµ.

(a) Prove that i is injective.
(b) Show that the following diagram commutes:

R(G)∗ F //
∏

σ∈Ĝ End(Eσ)

L1(G)
?�

i

OO

F //
(⊕

σ∈Ĝ End(Eσ)
)
0

?�

OO

This justifies the notation F for the Fourier transform on R(G)∗ (compare with Exercise 4.11 (a)).

1If G is a compact Lie group, then the space E ′(G) of distributions on G is defined to be the topological dual of
C∞(G). In this case, R(G) is a dense subspace of C∞(G), so we have an embedding E ′(G) ↪→ R(G)∗.
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