Throughout this sheet, G is a compact group equipped with a normalized Haar measure μ . Let \widehat{G} denote the unitary dual of G, i.e., the set of unitary equivalence classes of unitary irreducible representations of G. For each $\sigma \in G$, choose a representation $(E^{\sigma}, \pi^{\sigma})$ in σ . Recall (see the lectures) that dim $E^{\sigma} < \infty$ for each σ . The algebra of representative functions on G is denoted by $\mathscr{R}(G)$. For each finite-dimensional continuous representation (E, π) of G and each $T \in \operatorname{End}(E)$, we define $\pi_T \in \mathscr{R}(G)$ by $\pi_T(x) = \operatorname{Tr}(T\pi(x))$. The image of the map $\operatorname{End}(E^{\sigma}) \to \mathscr{R}(G)$, $T \mapsto \pi^{\sigma}_T$, is denoted by $\mathscr{R}_{\sigma}(G)$.

Using the fact that every finite-dimensional continuous representation of G is unitarizable (see the lectures), and combining this with Exercise 11.2 (b), we will often identify \hat{G} with the set of (algebraic) equivalence classes of finite-dimensional continuous irreducible representations of G.

Definition 13.1. A function $f \in L^2(G)$ is *central* if $f(xyx^{-1}) = f(y)$ for all $x \in G$ and almost all $y \in G$. Note that the equality actually holds for all $x, y \in G$ provided that f is continuous.

The space of all central functions in $L^2(G)$ (resp., in C(G), in $\mathscr{R}(G)$, ...) will be denoted by $ZL^2(G)$ (resp., $ZC(G), Z\mathscr{R}(G), \ldots$).

13.1. Interpret $ZL^2(G)$, ZC(G), etc., as the submodule of invariants with respect to a suitable action of G on $L^2(G)$, C(G), etc.

Definition 13.2. Given a finite-dimensional continuous representation (E, π) of G, the *character* of π is a function $\chi_{\pi} \in \mathscr{R}(G)$ given by $\chi_{\pi}(x) = \operatorname{Tr} \pi(x)$. (In other words, $\chi_{\pi} = \pi_{\mathbf{1}_{E}}$, see above.) Observe that $\chi_{\pi} \in Z\mathscr{R}(G)$.

13.2. Prove that (a) $\chi_{\pi\oplus\tau} = \chi_{\pi} + \chi_{\tau}$; (b) $\chi_{\pi\otimes\tau} = \chi_{\pi}\chi_{\tau}$; (c) $\chi_{\bar{\pi}} = \overline{\chi_{\pi}}$.

For each $\sigma \in \widehat{G}$, let $\chi_{\sigma} = \chi_{\pi^{\sigma}}$.

13.3. Show that

- (a) $Z\mathscr{R}(G)$ is dense in ZC(G) and in $ZL^2(G)$;
- (b) $Z\mathscr{R}_{\sigma}(G) = \mathbb{C}\chi_{\sigma};$
- (c) $\{\chi_{\sigma} : \sigma \in \widehat{G}\}$ is a vector space basis of $\mathbb{ZR}(G)$ and an orthonormal basis of $\mathbb{ZL}^2(G)$.

13.4. Let π be a finite-dimensional continuous representation of G, and let $\pi = \bigoplus_{\sigma} m_{\sigma} \pi^{\sigma}$ be the decomposition of π into irreducibles (where $m_{\sigma} \in \mathbb{Z}_{\geq 0}$ is the *multiplicity* of σ in π). Show that (a) $m_{\sigma} = \langle \chi_{\pi} | \chi_{\sigma} \rangle$ (the inner product in $L^2(G)$);

(b)
$$\|\chi_{\pi}\|_{2}^{2} = \sum m_{\sigma}^{2};$$

- (c) π is irreducible iff $\|\chi_{\pi}\|_2 = 1$;
- (d) two finite-dimensional continuous representations π and τ are isomorphic iff $\chi_{\pi} = \chi_{\tau}$.

13.5. Let $\sigma, \tau \in \widehat{G}$. Show that $\sigma \otimes \tau$ contains the one-dimensional trivial representation iff $\tau \cong \overline{\sigma}$.

13.6. Let $F \subset \widehat{G}$ be a subset containing the one-dimensional trivial representation, closed under complex conjugation and having the property that, for each $\sigma, \tau \in F$, all irreducible subrepresentations of $\sigma \otimes \tau$ belong to F. Let $\mathscr{R}_F(G) = \sum_{\sigma \in F} \mathscr{R}_{\sigma}(G)$ (in other words, $\mathscr{R}_F(G)$ is the linear span of matrix elements of representations belonging to F). Show that

- (a) $\mathscr{R}_F(G)$ is a unital *-subalgebra of $\mathscr{R}(G)$;
- (b) if F separates the points of G, then $F = \widehat{G}$.

13.7. Let π be a finite-dimensional continuous representation of G. Prove that the following conditions are equivalent:

- (i) π is faithful;
- (ii) for each $\sigma \in \widehat{G}$, π^{σ} is isomorphic to a subrepresentation of $\pi^{\otimes k} \otimes \overline{\pi}^{\otimes \ell}$ for some $k, \ell \in \mathbb{Z}_{\geq 0}$;
- (iii) $\mathscr{R}(G)$ is generated as a *-algebra by the matrix elements of π ;
- (iv) $\mathscr{R}(G)$ is generated as an algebra by the matrix elements of π and by $(\det \circ \pi)^{-1}$.

13.8. Show that the following conditions are equivalent:

- (i) G is topologically isomorphic to a Lie group;
- (ii) G has a finite-dimensional faithful continuous representation;
- (iii) $\mathscr{R}(G)$ is a finitely generated algebra.

(You may use the fact that a closed subgroup of a Lie group is a smooth submanifold.)

13.9. For each $n \in \mathbb{Z}_{\geq 0}$, let L_n denote the space of complex homogeneous polynomials of degree n in two variables. Define a representation π_n of SU(2) on L_n by $(\pi_n(x)f)(u) = f(ux)$ (here ux stands for the product of the row $u = (u_1, u_2) \in \mathbb{C}^2$ by the 2 × 2 matrix $x \in SU(2)$).

- (a) Prove that π_n is irreducible.
- (b) Calculate the restriction of the character $\chi_n = \chi_{\pi_n}$ to the diagonal subgroup \mathbb{T} of SU(2).
- (c) Prove that the character of $\pi_m \otimes \pi_n$ (where $m \leq n$) is equal to $\sum_{k=0}^m \chi_{m+n-2k}$.
- (d) Deduce that $SU(2) = \{\pi_n : n \in \mathbb{Z}_{\geq 0}\}.$

Hints. (a) Consider the restriction of π_n to \mathbb{T} and show that each invariant subspace $E \subset L_n$ is spanned by monomials. Then act by a nondiagonal matrix $x \in SU(2)$ on a monomial $u_1^i u_2^j \in E$.

- (c) A central function on SU(2) is completely determined by its restriction to \mathbb{T} .
- (d) Use (c) and Exercise 13.6.

13.10. Suppose that the topology on G has a countable base. Prove that \widehat{G} is at most countable.

Define the Fourier cotransform $\check{\mathscr{F}}$: $\bigoplus_{\sigma \in \widehat{G}} \operatorname{End}(E^{\sigma}) \to \mathscr{R}(G)$ by $T \in \operatorname{End}(E^{\sigma}) \mapsto \pi_T^{\sigma} \in \mathscr{R}(G)$. Since, for each $\sigma \in \widehat{G}$, $\check{\mathscr{F}}$ maps $\operatorname{End}(E^{\sigma})$ isomorphically onto $\mathscr{R}_{\sigma}(G)$, and since $\mathscr{R}(G) = \bigoplus_{\sigma} \mathscr{R}_{\sigma}(G)$ (see the lectures), it follows that $\check{\mathscr{F}}$ is an isomorphism.

13.11. Construct a vector space isomorphism $(\bigoplus_{\sigma} \operatorname{End}(E^{\sigma}))^* \cong \prod_{\sigma} \operatorname{End}(E^{\sigma})$ (where the star denotes the *algebraic* dual space).

Let $\mathscr{F} = (\check{\mathscr{F}})^* : \mathscr{R}(G)^* \to \prod_{\sigma} \operatorname{End}(E^{\sigma})$ be the (algebraic) dual of $\check{\mathscr{F}}$. Morally, the elements of $\mathscr{R}(G)^*$ should be interpreted as "generalized distributions" on G, and \mathscr{F} is the Fourier transform of generalized distributions¹.

13.12. Define $i: L^1(G) \to \mathscr{R}(G)^*$ by $i(f)(g) = \int_G fg \, d\mu$.

- (a) Prove that i is injective.
- (b) Show that the following diagram commutes:

This justifies the notation \mathscr{F} for the Fourier transform on $\mathscr{R}(G)^*$ (compare with Exercise 4.11 (a)).

¹If G is a compact Lie group, then the space $\mathscr{E}'(G)$ of distributions on G is defined to be the topological dual of $C^{\infty}(G)$. In this case, $\mathscr{R}(G)$ is a dense subspace of $C^{\infty}(G)$, so we have an embedding $\mathscr{E}'(G) \hookrightarrow \mathscr{R}(G)^*$.