29.11.2022 HARMONIC ANALYSIS & REPS Exercises for Lectures 12-13

Throughout this sheet, G is a compact group equipped with a normalized Haar measure p. Let G denote the
unitary dual of G, i.e., the set of unitary equivalence classes of unitary irreducible representations of G. For each
o € G, choose a representation (E?,77) in 0. Recall (see the lectures) that dim E? < oo for each o. The algebra
of representative functions on G is denoted by #Z(G). For each finite-dimensional continuous representation (E, ) of
G and each T € End(F), we define mr € Z(G) by nr(z) = Tr(Tn(z)). The image of the map End(E?) — Z(G),
T — 77, is denoted by %, (G).

Using the fact that every finite-dimensional continuous representation of G is unitarizable (see the lectures), and

combining this with Exercise 11.2 (b), we will often identify G with the set of (algebraic) equivalence classes of
finite-dimensional continuous irreducible representations of G.

Definition 13.1. A function f € L?(G) is central if f(zyx~!) = f(y) for all x € G and almost all y € G. Note that
the equality actually holds for all z,y € G provided that f is continuous.

The space of all central functions in L?(G) (resp., in C(G), in Z(G), ...) will be denoted by ZL?(G) (resp.,
ZC(@), ZR(@G), ...).

13.1. Interpret ZL*(G), ZC(QG), etc., as the submodule of invariants with respect to a suitable action
of G on L*(G), C(G), ete.

Definition 13.2. Given a finite-dimensional continuous representation (F, ) of G, the character of 7 is a function
Xr € Z(G) given by xr(x) = Trm(z). (In other words, x» = m1,, see above.) Observe that x, € ZZ(G).

13.2. Prove that (a) Xror = Xr T X+ (b) Xr@r = XrXri (c) X7 = Xr-

For each o € é, let xXo = Xno-

13.3. Show that

(a) ZZ(G) is dense in ZC(G) and in ZL*(G);

(b) 2%:(G) = Cxo;

(c) {xo:0 € G} is a vector space basis of ZZ(G) and an orthonormal basis of ZL*(G).

13.4. Let 7 be a finite-dimensional continuous representation of G, and let 7 = @_m,7n? be the
decomposition of 7 into irreducibles (where m, € Z>q is the multiplicity of o in 7). Show that

(a) my, = (Xx | Xo) (the inner product in L*(G));

(b) lIxxl3 = > m3:

(c) m is irreducible iff ||x,|l2 = 1;

(d) two finite-dimensional continuous representations 7 and 7 are isomorphic iff x, = x,.

13.5. Let 0,7 € G. Show that o ® T contains the one-dimensional trivial representation iff 7 = 7.
13.6. Let F C G be a subset containing the one-dimensional trivial representation, closed under
complex conjugation and having the property that, for each o,7 € F, all irreducible subrepresenta-
tions of o ® 7 belong to F. Let Zr(G) = ), cp %-(G) (in other words, Zr(G) is the linear span of
matrix elements of representations belonging to F'). Show that

(a) Zr(G) is a unital x-subalgebra of Z(G);

(b) if F separates the points of G, then F' = G.

13.7. Let 7 be a finite-dimensional continuous representation of GG. Prove that the following condi-
tions are equivalent:

(i) = is faithful;
(ii) for each o € G, 77 is isomorphic to a subrepresentation of 7% @ 7®¢ for some k, £ € Zo;

)
(i) Z(Q) is generated as a x-algebra by the matrix elements of r;
(iv) Z(G) is generated as an algebra by the matrix elements of 7 and by (det o)™
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13.8. Show that the following conditions are equivalent:

(i) G is topologically isomorphic to a Lie group;
(ii) G has a finite-dimensional faithful continuous representation;
(iii) Z(G) is a finitely generated algebra.

(You may use the fact that a closed subgroup of a Lie group is a smooth submanifold.)

13.9. For each n € Z, let L,, denote the space of complex homogeneous polynomials of degree n
in two variables. Define a representation 7, of SU(2) on L, by (m,(x)f)(u) = f(uz) (here ux stands
for the product of the row u = (u1,us) € C* by the 2 x 2 matrix x € SU(2)).

(a) Prove that m, is irreducible.

(b) Calculate the restriction of the character x, = X, to the diagonal subgroup T of SU(2).

(c) Prove that the character of m,, ® 7, (where m < n) is equal to > ;" ; Xm-+n—2k-

—

(d) Deduce that SU(2) = {m, : n € Z>o}.

Hints.  (a) Consider the restriction of 7, to T and show that each invariant subspace E C L,
is spanned by monomials. Then act by a nondiagonal matrix = € SU(2) on a monomial u’luj2 € FE.
(c) A central function on SU(2) is completely determined by its restriction to T.

(d) Use (c) and Exercise 13.6.

13.10. Suppose that the topology on G has a countable base. Prove that G is at most countable.

Define the Fourier cotransform . : D,ca End(E7) — Z(G) by T € End(E?) — 77 € %Z(G). Since, for each

o€ G, . maps End(E?) isomorphically onto %, (G), and since Z(G) = @D, %-(G) (see the lectures), it follows that
% is an isomorphism.

13.11. Construct a vector space isomorphism (€0, End(E7))* = [[, End(E?) (where the star denotes
the algebraic dual space).

Let Z = (#)*: Z(G)* — [], End(E?) be the (algebraic) dual of %. Morally, the elements of %(G)* should be
interpreted as “generalized distributions” on G, and .% is the Fourier transform of generalized distributions®.

13.12. Define i: LY(G) — Z(G)* by i(f)(9) = [, fgdpu.
(a) Prove that i is injective.
(b) Show that the following diagram commutes:

R(G) = T], e End(E”)

LJ(A;) — % (D, EJAHd(EU»o

This justifies the notation .# for the Fourier transform on Z(G)* (compare with Exercise 4.11 (a)).

'Tf G is a compact Lie group, then the space &’(G) of distributions on G is defined to be the topological dual of
C>(@G). In this case, Z(G) is a dense subspace of C*°(G), so we have an embedding &' (G) — Z(G)*.



