9.1. Let π be a representation of a topological group G on a finite-dimensional vector space E. We endow E and $\mathrm{GL}(E)$ with the standard (normed) topologies. Prove that π is continuous (i.e., the map $G \times E \rightarrow E,(x, v) \mapsto \pi(x) v$, is continuous) if and only if π is a continuous map from G to $\mathrm{GL}(E)$.
9.2. Let π be a representation of a locally compact group G on a Banach space E. Let $\mathrm{GL}_{\text {top }}(E)$ denote the group of all linear topological automorphisms of E. Prove that π is continuous (i.e., the map $G \times E \rightarrow E,(x, v) \mapsto \pi(x) v$, is continuous) if and only if π is a continuous map from G to $\mathrm{GL}_{\text {top }}(E)$ equipped with the strong operator topology.
9.3. Let G be a nondiscrete locally compact group. Show that the left regular representation of G on $L^{2}(G)$ is a discontinuous map from G to $\mathrm{GL}_{\text {top }}(G)$ for the operator norm topology on $\mathrm{GL}_{\text {top }}(E)$.
9.4. Let G be a locally compact group, and let $1 \leqslant p<\infty$. Show that $C_{c}(G)$ is a dense subspace of $L^{p}(G)$. (This result was used at the lecture when we constructed the regular representation of G on $\left.L^{p}(G).\right)$
9.5. Define the left regular representation λ of a locally compact group G on $L^{\infty}(G)$ in exactly the same way as on $L^{p}(G)(1 \leqslant p<\infty)$. Is λ necessarily continuous? Is the restriction of λ to $C_{b}(G)$ or to $C_{0}(G)$ continuous?
9.6. Let G be a locally compact group. Construct a unitary isomorphism between the left and right regular representations of G on $L^{2}(G)$.
9.7. (a) Let S be a locally compact Hausdorff topological space equipped with a continuous action $G \times S \rightarrow S$ of a locally compact group G. Suppose that μ is a G-invariant Radon measure on S (i.e., $\mu(x B)=\mu(B)$ for each Borel set $B \subset S$ and each $x \in G$). Prove that the formula $(\pi(x) f)(s)=$ $f\left(x^{-1} s\right)\left(x \in G, s \in S, f \in L^{2}(S, \mu)\right)$ determines a continuous representation π of G on $L^{2}(S, \mu)$.
(b) Let $G=\mathrm{SU}(2)$ act on the sphere $S=S^{3} \subset \mathbb{C}^{2}$ tautologically, and let π denote the respective representation of G on $L^{2}(S, \mu)$, where μ is the standard area measure on S. Construct a unitary isomorphism between π and the left regular representation of G.
9.8. Show that $\operatorname{SL}(2, \mathbb{R})$ has no finite-dimensional unitary representations except for the trivial one.

Hint. Conjugate the matrix $A(t)=\left(\begin{array}{cc}1 & t \\ 0 & 1\end{array}\right)$ by the matrix $\left(\begin{array}{cc}n & 0 \\ 0 & 1 / n\end{array}\right)(t \in \mathbb{R}, n \in \mathbb{N})$, then apply a unitary finite-dimensional representation π, and look at the spectrum of $\pi(A(t))$.
9.9. Let G be the Heisenberg group (see Exercise 5.9). Define a representation π of G on $L^{2}(\mathbb{R})$ by

$$
\left(\pi\left(\begin{array}{llll}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right) f\right)(x)=e^{2 \pi i(b x+c)} f(x+a)
$$

Show that π is unitary and irreducible. Is it algebraically irreducible?
Hint. If $H_{0} \subset L^{2}(\mathbb{R})$ is a closed G-submodule, then H_{0} is invariant under translations and under multiplication by unitary characters of \mathbb{R}. Deduce that H_{0} is invariant under convolution with functions belonging to $L^{1}(\mathbb{R})$ and under multiplication by functions in $C_{0}(\mathbb{R})$.
9.10. Let H denote the space of functions $f: \mathscr{H} \rightarrow \mathbb{C}$ that are holomorphic on the upper half-plane $\mathscr{H}=\{z \in \mathbb{C}: \operatorname{Im} z>0\}$ and have the property that $|f|^{2}$ is Lebesgue integrable on \mathscr{H}. We endow H with the inner product inherited from $L^{2}(\mathscr{H})$. Define a representation π of $\mathrm{SL}(2, \mathbb{R})$ on H by

$$
\left(\pi\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) f\right)(z)=(-b z+d)^{-2} f\left(\frac{a z-c}{-b z+d}\right) .
$$

Show that π is unitary and irreducible. Is it algebraically irreducible?
Hint. Show that each closed $\operatorname{SL}(2, \mathbb{R})$-submodule $H_{0} \subset H$ contains a function f such that $f(i) \neq 0$. Then calculate the integral

$$
\int_{0}^{2 \pi} e^{-2 i \varphi} \pi\binom{\cos \varphi \sin \varphi}{-\sin \varphi \cos \varphi} f d \varphi
$$

by using residues.
9.11. Define $f:[0,1] \rightarrow c_{0}$ by

$$
f(t)=\left(\chi_{(0,1]}(t), 2 \chi_{(0,1 / 2]}(t), \ldots, n \chi_{(0,1 / n]}(t), \ldots\right) \quad(t \in[0,1])
$$

Show that f is Dunford integrable (w.r.t. the Lebesgue measure on $[0,1]$), but is not Pettis integrable.
9.12. Let (X, μ) be a measure space, and let E, F be Banach spaces.
(a) Suppose that $f: X \rightarrow E$ is Dunford integrable and that $\|f\|: x \mapsto\|f(x)\|$ is integrable. Show that $\left\|\int f d \mu\right\| \leqslant \int\|f\| d \mu$.
(b) Suppose that $f: X \rightarrow E$ is Pettis integrable. Show that for each bounded linear map $T: E \rightarrow F$ the function $T \circ f$ is Pettis integrable, and that $T\left(\int f d \mu\right)=\int(T \circ f) d \mu$.

