
28.09.2022 Harmonic analysis & Representations Exercises for Lecture 4

4.1. As in Exercises 3.8 and 3.9, define the convolution product on L1(R), show that L1(R) is a
commutative nonunital algebra, and prove that the Fourier transform FR : L

1(R) → C0(R) is an
algebra homomorphism.

4.2. Suppose that f ∈ C1(R) and that f, f ′ ∈ L1(R). Prove that (f ′) (̂λ) = 2πiλf̂(λ) (λ ∈ R).
Deduce that if f ∈ Cp(R) and f, f ′, . . . , f (p) ∈ L1(R), then f̂(λ) = o(|λ|−p) as λ→ ∞.

4.3. Formulate and prove a result similar to Exercise 4.2 for the Fourier transform on T.

4.4. Let t = 1R denote the identity map on R. Let f ∈ L1(R), and suppose that tf ∈ L1(R). Show
that f̂ ∈ C1(R), and that f̂ ′(λ) = −2πi(tf) (̂λ) (λ ∈ R). Deduce that if f, tf, . . . , tpf ∈ L1(R), then
f̂ ∈ Cp(R).

4.5. Formulate and prove a result similar to Exercise 4.4 for the Fourier transform on Z.

4.6. Let F : L1(R) → C0(R) denote the Fourier transform, and let F̂ = SF , where (Sf)(t) = f(−t)
(t ∈ R).
(a) Show that F and F̂ map the Schwartz space S (R) continuously into itself.
(b) Suppose that T : S (R) → S (R) is a linear map commuting with d

dt
and with the multiplication

by the coordinate t. Show that T = c1S (R) for some c ∈ C.
(c) Let f(t) = e−πt2 (t ∈ R). Show that f̂ = f .

(d) Deduce from (a), (b), (c) that FF̂ = F̂F = 1S (R) on S (R). In other words, F is a topological
isomorphism of S (R) onto itself, and F 2 = S on S (R).

4.7. (This is an analog of Exercise 4.6 for Z and T.) Let C∞
2π(R) denote the space of all smooth 2π-

periodic functions on R, and let j : C∞(T) → C∞
2π(R) denote the vector space isomorphism given by

(jf)(t) = f(eit) (t ∈ R). Given f ∈ C∞(T), define the derivative f ′ ∈ C∞(T) of f by f ′ = j−1(j(f)′).
The higher derivatives f (k) are defined in an obvious way. We endow C∞(T) with the topology
generated by the family {∥ · ∥k : k ∈ Z>0} of seminorms, where ∥f∥k = supz∈T |f (k)(z)|.

We define the space of rapidly decreasing sequences by

s(Z) =
{
x = (xn) ∈ CZ : ∥x∥k = sup

n∈Z
|xn||n|k <∞ ∀k ∈ Z>0

}
and topologize s(Z) by the family {∥ · ∥k : k ∈ Z>0} of seminorms. Prove that
(a) FZ maps s(Z) continuously into C∞(T);
(b) FT maps C∞(T) continuously into s(Z);
(c) FTFZ = SZ and FZFT = ST, where (SZf)(n) = f(−n) and (STg)(z) = g(z−1) for every
f ∈ s(Z) and g ∈ C∞(T). As a consequence, FZ and FT are topological isomorphisms between s(Z)
and C∞(T).

4.8. Given λ ∈ R, let χλ(t) = e−2πiλt (t ∈ R). (Recall that the χλ’s are precisely the unitary
characters of R.) Find the Fourier transforms of χλ and of the Dirac δ-function δλ.

4.9. Let s′(Z) denote the topological dual of s(Z) (i.e., the space of all continuous linear functionals
on s(Z)). Show that the map φ 7→ (φ(δn))n∈Z is a vector space isomorphism between s′(Z) and the
space of tempered sequences{

x = (xn) ∈ CZ : |xn||n|−k is bounded for some k ∈ Z>0

}
.
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4.10. Let D ′(T) denote the topological dual of C∞(T) (i.e., the space of all continuous linear func-
tionals on C∞(T)). The elements of D ′(T) are called distributions on T. Given f ∈ L1(T), define
φf ∈ D ′(T) by φf (g) =

∫
T fg dµ. Show that the map L1(T) → D ′(T), f 7→ φf , is injective.

4.11. Define the Fourier transforms FZ : s
′(Z) → D ′(T) and FT : D ′(T) → s′(Z) to be the maps

dual to FT : C
∞(T) → s(Z) and FZ : s(Z) → C∞(T), respectively.

(a) Identify c0(Z) with a subspace of s′(Z) via Exercise 4.9, and identify L1(T) with a subspace of
D ′(T) via Exercise 4.10. Show that that the Fourier transforms on s′(Z) and on D ′(T) extend the
“classical” Fourier transforms ℓ1(Z) → C(T) and L1(T) → c0(Z).
(b) (This is an analog of Exercise 4.8.) Calculate the Fourier transforms of the unitary characters
and of the Dirac δ-functions on Z and on T.
(c) (the Fourier series in D ′(T)). Show that for each f ∈ D ′(T) we have f =

∑
n∈Z f̂(n)χ−n, where

the series converges in the weak∗ topology on D ′(T) (i.e., the topology of pointwise convergence on
elements of C∞(T)).

4.12. (a) Define a canonical topology on C∞(T2) by analogy with C∞(T).
(b) Show that the map

C∞(T)⊗C∞(T) → C∞(T2), f ⊗ g 7→ ((z, w) 7→ f(z)g(w)),

is injective and has dense image. From now on, we identify C∞(T)⊗C∞(T) with a dense subspace
of C∞(T2) via the above map.
(c) (tensor product of distributions). For each φ, ψ in D ′(T) the element φ ⊗ ψ ∈ D ′(T)⊗D ′(T)
may be viewed as a linear functional on C∞(T)⊗C∞(T). Show that φ ⊗ ψ uniquely extends to a
continuous linear functional on C∞(T2).
(d) Define ∆: C∞(T) → C∞(T2) by (∆f)(z, w) = f(zw). For each φ, ψ in D ′(T) define the
convolution φ ∗ ψ ∈ D ′(T) by

⟨φ ∗ ψ, f⟩ = ⟨φ⊗ ψ,∆f⟩ (f ∈ C∞(T)).

Show that (D ′(T), ∗) is a commutative unital algebra containing L1(T) and CT as subalgebras. In
particular, the convolution on D ′(T) agrees with those on L1(T) and on CT.
(e) Identify s′(Z) with the space of tempered sequences (see Exercise 4.9). Show that s′(Z) is
a unital algebra under pointwise multiplication, and that the Fourier transforms FZ and FT (see
Exercise 4.11) are algebra isomorphisms between s′(Z) and D ′(T).

4.13 (the Poisson summation formula). Identify T with R/Z, and define a : S (R) → C∞(T) by
(af)(t+Z) =

∑
n∈Z f(t+ n). Show that we indeed have af ∈ C∞(T) whenever f ∈ S (R), and that

the diagram

S (R) FR //

a

��

S (R)

restr.
��

C∞(T)
FT

// s(Z)

commutes. Deduce that for each f ∈ S (R) we have∑
n∈Z

f(t+ n) =
∑
n∈Z

f̂(n)e2πint (t ∈ R).
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