Convention. All vector spaces are over \mathbb{C}.
1.1. Prove that every character of a finite group is unitary.
1.2. Prove that a finite group has an injective character iff it is cyclic.
1.3. Describe all characters of
(a) S_{n};
(b) D_{n};
(c) Q_{8}.
1.4. Prove that, for a finite group, the intersection of the kernels of all the characters is the commutator subgroup (that is, the subgroup generated by all possible commutators $x y x^{-1} y^{-1}$).
1.5. Let G be a finite group, and let $\operatorname{Fun}(G)=\mathbb{C}^{G}$ be the space of all functions on G. Recall that the convolution on $\operatorname{Fun}(G)$ is a bilinear map uniquely determined by $\delta_{x} * \delta_{y}=\delta_{x y}(x, y \in G)$, where δ_{x} is the function equal to 1 at $x \in G$ and 0 elsewhere. Prove that for all $f, g \in \operatorname{Fun}(G)$ we have

$$
(f * g)(x)=\sum_{y \in G} f(y) g\left(y^{-1} x\right) \quad(x \in G)
$$

1.6. Let G be a finite abelian group of order n, and let $\pi: G \rightarrow \operatorname{GL}(V)$ be a representation on a finite-dimensional vector space V. For every $\chi \in \widehat{G}$ define $V_{\chi}=\{v \in V: \pi(x) v=\chi(x) v \forall x \in G\}$. Define an operator P_{χ} on V by

$$
P_{\chi}=\frac{1}{n} \sum_{x \in G} \overline{\chi(x)} \pi(x)
$$

(a) Prove that $P_{\chi} P_{\tau}=\delta_{\chi \tau} P_{\chi}, \sum_{\chi \in \widehat{G}} P_{\chi}=1_{V}$, and $\operatorname{Im} P_{\chi}=V_{\chi}$. Deduce that $V=\bigoplus_{\chi \in \widehat{G}} V_{\chi}$ and that P_{χ} is a projection onto V_{χ} along $\bigoplus_{\tau \neq \chi} V_{\tau}$.
(b) Find V_{χ} in the case where π is the regular representation of G on $\operatorname{Fun}(G)$ given by $(\pi(x) f)(y)=$ $f(y x)$.
1.7. Let G be a finite abelian group. Prove that the following properties of a linear operator $T: \operatorname{Fun}(G) \rightarrow \operatorname{Fun}(G)$ are equivalent:
(i) T is shift invariant (i.e., $T \pi(x)=\pi(x) T$ for all $x \in G$, where π is the regular representation from the previous exercise);
(ii) there exists a function $f \in \operatorname{Fun}(G)$ such that $T h=f * h$ for all $h \in \operatorname{Fun}(G)$;
(iii) all characters of G are eigenvectors for T.
1.8. Let G be a finite abelian group, and let H be a subgroup of G.
(a) Construct an isomorphism $(G / H)^{\wedge} \cong H^{\perp}$, where $H^{\perp}=\left\{\chi \in \widehat{G}:\left.\chi\right|_{H}=0\right\}$ is the annihilator of H in \widehat{G}.
(b) (the Poisson summation formula). Define $a: \operatorname{Fun}(G) \rightarrow \operatorname{Fun}(G / H)$ by $(a f)(x H)=\sum_{y \in H} f(x y)$. Show that the diagram

commutes. Deduce that for each $f \in \operatorname{Fun}(G)$ we have

$$
\sum_{y \in H} f(x y)=\frac{1}{(G: H)} \sum_{\chi \in H^{\perp}} \hat{f}(\chi) \overline{\chi(x)} \quad(x \in G) .
$$

