Commutative Banach algebras and C^* -algebras. Spectral theory of operators on a Hilbert space

Exercises marked by "-B" are optional. If you solve such exercises, you will earn bonus points.

- **4.1.** Recall that $C^n[0,1]$ is a Banach algebra under the norm $||f|| = \sum_{k=0}^n \frac{||f^{(k)}||_{\infty}}{k!}$ (where $||\cdot||_{\infty}$ is the supremum norm). Describe the maximal spectrum and the Gelfand transform of $C^n[0,1]$.
- **4.2.** Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. The disk algebra $\mathscr{A}(\bar{\mathbb{D}})$ consists of those $f \in C(\bar{\mathbb{D}})$ that are holomorphic on \mathbb{D} . Show that $\mathscr{A}(\bar{\mathbb{D}})$ is a closed subalgebra of $C(\bar{\mathbb{D}})$. Describe the maximal spectrum and the Gelfand transform of $\mathscr{A}(\bar{\mathbb{D}})$.
- **4.3.** Let $f,g \in \ell^1(\mathbb{Z})$. The *convolution* of f and g is the function f * g on \mathbb{Z} given by

$$(f * g)(n) = \sum_{k \in \mathbb{Z}} f(k)g(n-k) \qquad (n \in \mathbb{Z}).$$
(1)

- (a) Show that the series in (1) converges, that $f * g \in \ell^1(\mathbb{Z})$, and that $\ell^1(\mathbb{Z})$ is a commutative unital Banach algebra under convolution.
- (b) Show that $\ell^1(\mathbb{Z})$ contains the group algebra $\mathbb{C}\mathbb{Z}$ as a dense subalgebra.
- (c) Describe the maximal spectrum and the Gelfand transform of $\ell^1(\mathbb{Z})$.

Hint to (c): each character χ of $\ell^1(\mathbb{Z})$ is uniquely determined by $\chi(\delta_1) \in \mathbb{C}$, where δ_1 is the element of \mathbb{CZ} corresponding to $1 \in \mathbb{Z}$. Show that, if $\chi \neq 0$, then $\chi(\delta_1) \in \mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$.

- **4.4-B.** Extend Exercise 4.3 to $\ell^1(G)$, where G is any (discrete) abelian group. (*Hint:* the maximal spectrum of $\ell^1(G)$ is homeomorphic to the dual group \widehat{G} of G, which consists of all group homomorphisms from G to \mathbb{T} .)
- **4.5.** Show that
- (a) $C^n[0,1]$ is a Banach *-algebra under the involution $f^*(t) = \overline{f(t)}$ $(t \in [0,1])$, but is not a C^* -algebra unless n = 0;
- (b) $\mathscr{A}(\bar{\mathbb{D}})$ is a Banach *-algebra under the involution $f^*(z) = \overline{f(\bar{z})}$ $(z \in \bar{\mathbb{D}})$, but is not a C^* -algebra;
- (c) $\ell^1(\mathbb{Z})$ is a Banach *-algebra under the involution $f^*(n) = \overline{f(-n)}$ $(n \in \mathbb{Z})$, but is not a C^* -algebra.
- **4.6-B.** (a) Does there exist a norm and an involution on $C^1[a,b]$ making it into a C^* -algebra?
- (b) Does there exist a norm and an involution on $\mathscr{A}(\bar{\mathbb{D}})$ making it into a C^* -algebra?
- (c) Does there exist a norm and an involution on $\ell^1(\mathbb{Z})$ making it into a C^* -algebra?

Remark. In (a,b,c), we do not assume that the new norm is equivalent to the original norm.

- **4.7.** Let $\alpha \in \ell^{\infty}$, and let M_{α} denote the respective diagonal operator on ℓ^2 . Show that for each $f \in C(\sigma(M_{\alpha}))$ we have $f(M_{\alpha}) = M_{f \circ \alpha}$.
- **4.8.** Let (X, μ) be a σ -finite measure space, let $\varphi \colon X \to \mathbb{C}$ be an essentially bounded measurable function, and let M_{φ} denote the respective multiplication operator on $L^2(X, \mu)$. Show that for each $f \in C(\sigma(M_{\varphi}))$ we have $f(M_{\varphi}) = M_{f \circ \varphi}$ (in particular, give a precise meaning to the expression $f \circ \varphi$).
- **4.9.** Let A be a unital C*-algebra, and let $u \in A$ be a unitary element. Show that $\sigma(u) \subset \mathbb{T}$ (where $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$).
- **4.10.** Let A be a unital C^* -algebra.
- (a) Prove that for each selfadjoint element $a \in A$ the element $u = \exp(ia)$ is unitary.
- (b) Prove that if $u \in A$ is a unitary element such that $\sigma(u) \neq \mathbb{T}$, then there exists a selfadjoint element $a \in A$ such that $u = \exp(ia)$.
- (c) Does (b) hold if $\sigma(u) = \mathbb{T}$?

- **4.11.** Show that a compact selfadjoint operator T is cyclic (a) if and (b) only if all the eigenvalues of T have multiplicity 1.
- **4.12.** Let $\varphi: [a,b] \to \mathbb{R}$ be a strictly monotone, continuous function. Prove that the multiplication operator $M_{\varphi}: L^2[a,b] \to L^2[a,b]$ is cyclic.
- **4.13.** Let T denote the operator on $L^2[0,1]$ defined by $(Tf)(t) = \sqrt{t}f(t)$. Find explicitly a positive Radon measure μ on [0,1] and a unitary isomorphism $U: L^2[0,1] \to L^2([0,1],\mu)$ which establishes a unitary equivalence between T and the multiplication operator M_t given by $(M_t f)(t) = t f(t)$.
- **4.14-B.** Show that for each unitary operator U on a Hilbert space H there exists a bounded selfadjoint operator T on H such that $U = \exp(iT)$ (compare with Exercise 4.10 (c)). Hint: the function $[0, 2\pi) \to \mathbb{T}$, $t \mapsto \exp(it)$, is a Borel bijection.
- **4.15-B.** Let T be a cyclic selfadjoint operator on a Hilbert space H. Prove that an operator $S \in \mathcal{B}(H)$ commutes with T if and only if there exists a bounded Borel function $f: \sigma(T) \to \mathbb{C}$ such that S = f(T).
- **4.16-B.** Let H be an infinite-dimensional separable Hilbert space. Prove that $\mathcal{K}(H)$ is a unique closed two-sided ideal of $\mathcal{B}(H)$ different from 0 and $\mathcal{B}(H)$.

Hint. Let $0 \neq I \subset \mathcal{B}(H)$ be a two-sided ideal. Recall the standard proof of the simplicity of the matrix algebra $M_n(\mathbb{C})$, and apply the same argument to show that I contains all finite rank operators. If I contains at least one noncompact operator, apply the spectral theorem.