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Convention. All vector spaces are over K = R or K = C.

Embeddings and quotients

Let X and Y be normed spaces. Recall that a linear operator T : X → Y is a coisometry if it takes the open unit
ball of X onto the open unit ball of Y .

1.1. Let X be a normed space, and let f : X → K be a linear functional.
(a) Show that f is open (unless f = 0).
(b) Show that f is a coisometry iff ∥f∥ = 1.
Warning: do not forget about the case where K = C.

1.2. Let X and Y be normed spaces, and let T : X → Y be a linear operator.
(a) Prove that if T maps the closed unit ball of X onto the closed unit ball of Y , then T is a
coisometry.
(b) Is the converse true?
(c) Show that T is an injective coisometry iff T is an isometric isomorphism.

1.3. Let α ∈ ℓ∞, and let X denote either ℓp or c0. Let Mα be the diagonal operator on X defined
by Mα(x) = (αixi)i∈N. Find a condition on α that is necessary and sufficient for Mα to be
(a) topologically injective; (b) open; (c) an isometry; (d) a coisometry.

1.4. Let (Ω, µ) be a σ-finite measure space, and let f be a bounded measurable function on Ω.
Answer questions (a) – (d) of the previous exercise for the multiplication operator Mf on Lp(Ω, µ),
Mf (g) = fg.

1.5. Let X be a normed space, and let X0 ⊂ X be a vector subspace. Prove that
(a) the quotient seminorm on X/X0 is indeed a seminorm;
(b) the topology on X/X0 determined by the quotient seminorm is the quotient topology (i.e., a
subset U ⊂ X/X0 is open iff Q−1(U) is open in X, where Q : X → X/X0 is the quotient map).

1.6. Construct (a) a topological isomorphism between c0 and a quotient of C[0, 1]; (b) an
isometric isomorphism between ℓ1 and a quotient of L1[0, 1].

Duality for normed spaces

Let X, Y be normed spaces, and let T : X → Y be a bounded linear operator. Recall (see the lectures) that the
dual of T is the operator T ∗ : Y ∗ → X∗ given by T ∗f = f ◦ T (where f ∈ Y ∗).

In the following exercise you are supposed to describe explicitly the duals of some concrete operators. The phrase
“describe explicitly” means the following. Given an operator T : X → X, where X is a Banach space, find another
“classical” Banach space Y together with an isometric isomorphism u : Y ∼−→ X∗ (hint: Y and u were discussed at
the lectures in the previous term). Then find (define by an explicit formula) an operator S : Y → Y such that the
following diagram commutes:

Y
S //

u

��

Y
u

��
X∗ T∗

// X∗

1.7. Describe explicitly the duals of the following operators:
(a) the diagonal operator Mα on ℓp (where 1 6 p < ∞) or on c0 (see Exercise 1.3);
(b) the right shift operator Tr and the left shift operator Tℓ on ℓp (1 6 p < ∞) or on c0 given by

Tr(x1, x2, . . .) = (0, x1, x2, . . .);

Tℓ(x1, x2, . . .) = (x2, x3, . . .)
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(c) the Volterra integral operator V on Lp[0, 1] (where 1 6 p < ∞) given by

(V f)(x) =

∫ x

0

f(t) dt (x ∈ [0, 1]);

(d) the Hilbert-Schmidt integral operator TK on L2(X,µ) given by

(TKf)(x) =

∫
X

K(x, y)f(y) dµ(y) (x ∈ X)

where (X,µ) is a measure space and K ∈ L2(X ×X,µ× µ).

1.8. Let X be a normed space, and let iX : X → X∗∗ be the canonical embedding. Prove that for
each operator T ∈ B(X, Y ) the following diagram commutes.

X∗∗ T ∗∗
// Y ∗∗

X
T //

iX

OO

Y

iY

OO

1.9. Let X be a normed space, and let iX : X → X∗∗ be the canonical embedding.
(a) Find a relation between the operators iX∗ : X∗ → X∗∗∗ and i∗X : X∗∗∗ → X∗.
(b) Prove that a Banach space X is reflexive ⇐⇒ X∗ is reflexive.
(c) Deduce that ℓ1, ℓ∞, L∞[a, b] are not reflexive.

1.10. Let X and Y be Banach spaces, and let S ∈ B(Y ∗, X∗). Do we always have S = T ∗ for some
T ∈ B(X, Y )?

Let X be a normed space. Recall (see the lectures) that the annihilator of a subset M ⊂ X and the preannihilator
of a subset N ⊂ X∗ are given by

M⊥ = {f ∈ X∗ : f(x) = 0 ∀x ∈ M}, ⊥N = {x ∈ X : f(x) = 0 ∀ f ∈ N}.

The double annihilator theorem (see the lectures) asserts that for every M ⊂ X we have ⊥(M⊥) = span(M) (the
closure of the linear span). The following two exercises show that the “dual” formula (⊥N)⊥ = span(N) fails in
general (unless X is reflexive).

1.11. Identify (ℓ1)∗ with ℓ∞, and consider c0 as a subspace of (ℓ1)∗. Find ⊥c0 and (⊥c0)
⊥.

1.12. LetX be a nonreflexive Banach space. Prove that there exists a closed vector subspaceN ⊂ X∗

such that N ̸= (⊥N)⊥.

Recall (see the lectures) that for every bounded linear operator T : X → Y between normed spaces we have
ImT = ⊥(KerT ∗). In particular, ImT is dense in Y iff T ∗ is injective. The following exercise shows that the “dual”
statements fail in general (unless X is reflexive).

1.13. Give an example of an injective operator T ∈ B(X, Y ) between Banach spaces X and Y such
that ImT ∗ is not dense in X∗. (Hint: X must be nonreflexive, see above.) As a corollary, the equality
Im(T ∗) = (KerT )⊥ fails.

1.14. Let X be a Banach space, and let X0 ⊂ X be a closed vector subspace. Prove that X is
reflexive if and only if X0 and X/X0 are reflexive. (Hint: Johnson’s lemma.)
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