Convention. All vector spaces are over $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$.

Embeddings and quotients

Let X and Y be normed spaces. Recall that a linear operator $T: X \rightarrow Y$ is a coisometry if it takes the open unit ball of X onto the open unit ball of Y.
1.1. Let X be a normed space, and let $f: X \rightarrow \mathbb{K}$ be a linear functional.
(a) Show that f is open (unless $f=0$).
(b) Show that f is a coisometry iff $\|f\|=1$.

Warning: do not forget about the case where $\mathbb{K}=\mathbb{C}$.
1.2. Let X and Y be normed spaces, and let $T: X \rightarrow Y$ be a linear operator.
(a) Prove that if T maps the closed unit ball of X onto the closed unit ball of Y, then T is a coisometry.
(b) Is the converse true?
(c) Show that T is an injective coisometry iff T is an isometric isomorphism.
1.3. Let $\alpha \in \ell^{\infty}$, and let X denote either ℓ^{p} or c_{0}. Let M_{α} be the diagonal operator on X defined by $M_{\alpha}(x)=\left(\alpha_{i} x_{i}\right)_{i \in \mathbb{N}}$. Find a condition on α that is necessary and sufficient for M_{α} to be
(a) topologically injective;
(b) open;
(c) an isometry;
(d) a coisometry.
1.4. Let (Ω, μ) be a σ-finite measure space, and let f be a bounded measurable function on Ω. Answer questions (a) - (d) of the previous exercise for the multiplication operator M_{f} on $L^{p}(\Omega, \mu)$, $M_{f}(g)=f g$.
1.5. Let X be a normed space, and let $X_{0} \subset X$ be a vector subspace. Prove that
(a) the quotient seminorm on X / X_{0} is indeed a seminorm;
(b) the topology on X / X_{0} determined by the quotient seminorm is the quotient topology (i.e., a subset $U \subset X / X_{0}$ is open iff $Q^{-1}(U)$ is open in X, where $Q: X \rightarrow X / X_{0}$ is the quotient map).
1.6. Construct (a) a topological isomorphism between c_{0} and a quotient of $C[0,1]$; (b) an isometric isomorphism between ℓ^{1} and a quotient of $L^{1}[0,1]$.

Duality for normed spaces

Let X, Y be normed spaces, and let $T: X \rightarrow Y$ be a bounded linear operator. Recall (see the lectures) that the dual of T is the operator $T^{*}: Y^{*} \rightarrow X^{*}$ given by $T^{*} f=f \circ T$ (where $f \in Y^{*}$).

In the following exercise you are supposed to describe explicitly the duals of some concrete operators. The phrase "describe explicitly" means the following. Given an operator $T: X \rightarrow X$, where X is a Banach space, find another "classical" Banach space Y together with an isometric isomorphism $u: Y \xrightarrow{\sim} X^{*}$ (hint: Y and u were discussed at the lectures in the previous term). Then find (define by an explicit formula) an operator $S: Y \rightarrow Y$ such that the following diagram commutes:

1.7. Describe explicitly the duals of the following operators:
(a) the diagonal operator M_{α} on ℓ^{p} (where $1 \leqslant p<\infty$) or on c_{0} (see Exercise 1.3);
(b) the right shift operator T_{r} and the left shift operator T_{ℓ} on $\ell^{p}(1 \leqslant p<\infty)$ or on c_{0} given by

$$
\begin{aligned}
& T_{r}\left(x_{1}, x_{2}, \ldots\right)=\left(0, x_{1}, x_{2}, \ldots\right) \\
& T_{\ell}\left(x_{1}, x_{2}, \ldots\right)=\left(x_{2}, x_{3}, \ldots\right)
\end{aligned}
$$

(c) the Volterra integral operator V on $L^{p}[0,1]$ (where $1 \leqslant p<\infty$) given by

$$
(V f)(x)=\int_{0}^{x} f(t) d t \quad(x \in[0,1]) ;
$$

(d) the Hilbert-Schmidt integral operator T_{K} on $L^{2}(X, \mu)$ given by

$$
\left(T_{K} f\right)(x)=\int_{X} K(x, y) f(y) d \mu(y) \quad(x \in X)
$$

where (X, μ) is a measure space and $K \in L^{2}(X \times X, \mu \times \mu)$.
1.8. Let X be a normed space, and let $i_{X}: X \rightarrow X^{* *}$ be the canonical embedding. Prove that for each operator $T \in \mathscr{B}(X, Y)$ the following diagram commutes.

1.9. Let X be a normed space, and let $i_{X}: X \rightarrow X^{* *}$ be the canonical embedding.
(a) Find a relation between the operators $i_{X^{*}}: X^{*} \rightarrow X^{* * *}$ and $i_{X}^{*}: X^{* * *} \rightarrow X^{*}$.
(b) Prove that a Banach space X is reflexive $\Longleftrightarrow X^{*}$ is reflexive.
(c) Deduce that $\ell^{1}, \ell^{\infty}, L^{\infty}[a, b]$ are not reflexive.
1.10. Let X and Y be Banach spaces, and let $S \in \mathscr{B}\left(Y^{*}, X^{*}\right)$. Do we always have $S=T^{*}$ for some $T \in \mathscr{B}(X, Y)$?

Let X be a normed space. Recall (see the lectures) that the annihilator of a subset $M \subset X$ and the preannihilator of a subset $N \subset X^{*}$ are given by

$$
M^{\perp}=\left\{f \in X^{*}: f(x)=0 \forall x \in M\right\}, \quad{ }^{\perp} N=\{x \in X: f(x)=0 \forall f \in N\}
$$

The double annihilator theorem (see the lectures) asserts that for every $M \subset X$ we have ${ }^{\perp}\left(M^{\perp}\right)=\overline{\operatorname{span}}(M)$ (the closure of the linear span). The following two exercises show that the "dual" formula $\left({ }^{\perp} N\right)^{\perp}=\overline{\operatorname{span}}(N)$ fails in general (unless X is reflexive).
1.11. Identify $\left(\ell^{1}\right)^{*}$ with ℓ^{∞}, and consider c_{0} as a subspace of $\left(\ell^{1}\right)^{*}$. Find ${ }^{\perp} c_{0}$ and $\left({ }^{\perp} c_{0}\right)^{\perp}$.
1.12. Let X be a nonreflexive Banach space. Prove that there exists a closed vector subspace $N \subset X^{*}$ such that $N \neq\left({ }^{\perp} N\right)^{\perp}$.

Recall (see the lectures) that for every bounded linear operator $T: X \rightarrow Y$ between normed spaces we have $\overline{\operatorname{Im} T}=^{\perp}\left(\operatorname{Ker} T^{*}\right)$. In particular, $\operatorname{Im} T$ is dense in Y iff T^{*} is injective. The following exercise shows that the "dual" statements fail in general (unless X is reflexive).
1.13. Give an example of an injective operator $T \in \mathscr{B}(X, Y)$ between Banach spaces X and Y such that $\operatorname{Im} T^{*}$ is not dense in X^{*}. (Hint: X must be nonreflexive, see above.) As a corollary, the equality $\overline{\operatorname{Im}\left(T^{*}\right)}=(\operatorname{Ker} T)^{\perp}$ fails.
1.14. Let X be a Banach space, and let $X_{0} \subset X$ be a closed vector subspace. Prove that X is reflexive if and only if X_{0} and X / X_{0} are reflexive. (Hint: Johnson's lemma.)

