Convention. All vector spaces are over $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$.

Embeddings and quotients

Let X and Y be normed spaces. Recall that a linear operator $T: X \to Y$ is a *coisometry* if it takes the open unit ball of X onto the open unit ball of Y.

1.1. Let X be a normed space, and let $f: X \to \mathbb{K}$ be a linear functional.

(a) Show that f is open (unless f = 0).

(b) Show that f is a consometry iff ||f|| = 1.

Warning: do not forget about the case where $\mathbb{K} = \mathbb{C}$.

1.2. Let X and Y be normed spaces, and let $T: X \to Y$ be a linear operator.

(a) Prove that if T maps the closed unit ball of X onto the closed unit ball of Y, then T is a coisometry.

(b) Is the converse true?

(c) Show that T is an injective coisometry iff T is an isometric isomorphism.

1.3. Let $\alpha \in \ell^{\infty}$, and let X denote either ℓ^p or c_0 . Let M_{α} be the *diagonal operator* on X defined by $M_{\alpha}(x) = (\alpha_i x_i)_{i \in \mathbb{N}}$. Find a condition on α that is necessary and sufficient for M_{α} to be (a) topologically injective; (b) open; (c) an isometry; (d) a coisometry.

1.4. Let (Ω, μ) be a σ -finite measure space, and let f be a bounded measurable function on Ω . Answer questions (a) – (d) of the previous exercise for the *multiplication operator* M_f on $L^p(\Omega, \mu)$, $M_f(g) = fg$.

1.5. Let X be a normed space, and let $X_0 \subset X$ be a vector subspace. Prove that

(a) the quotient seminorm on X/X_0 is indeed a seminorm;

(b) the topology on X/X_0 determined by the quotient seminorm is the quotient topology (i.e., a subset $U \subset X/X_0$ is open iff $Q^{-1}(U)$ is open in X, where $Q: X \to X/X_0$ is the quotient map).

1.6. Construct (a) a topological isomorphism between c_0 and a quotient of C[0,1]; (b) an isometric isomorphism between ℓ^1 and a quotient of $L^1[0,1]$.

Duality for normed spaces

Let X, Y be normed spaces, and let $T: X \to Y$ be a bounded linear operator. Recall (see the lectures) that the dual of T is the operator $T^*: Y^* \to X^*$ given by $T^*f = f \circ T$ (where $f \in Y^*$).

In the following exercise you are supposed to describe explicitly the duals of some concrete operators. The phrase "describe explicitly" means the following. Given an operator $T: X \to X$, where X is a Banach space, find another "classical" Banach space Y together with an isometric isomorphism $u: Y \xrightarrow{\sim} X^*$ (hint: Y and u were discussed at the lectures in the previous term). Then find (define by an explicit formula) an operator $S: Y \to Y$ such that the following diagram commutes:

$$Y \xrightarrow{S} Y$$

$$u \downarrow \qquad \qquad \downarrow u$$

$$X^* \xrightarrow{T^*} X^*$$

1.7. Describe explicitly the duals of the following operators:

- (a) the diagonal operator M_{α} on ℓ^p (where $1 \leq p < \infty$) or on c_0 (see Exercise 1.3);
- (b) the right shift operator T_r and the left shift operator T_ℓ on ℓ^p $(1 \le p < \infty)$ or on c_0 given by

$$T_r(x_1, x_2, \ldots) = (0, x_1, x_2, \ldots);$$

$$T_\ell(x_1, x_2, \ldots) = (x_2, x_3, \ldots)$$

(c) the Volterra integral operator V on $L^p[0,1]$ (where $1 \le p < \infty$) given by

$$(Vf)(x) = \int_0^x f(t) dt \qquad (x \in [0, 1]);$$

(d) the Hilbert-Schmidt integral operator T_K on $L^2(X, \mu)$ given by

$$(T_K f)(x) = \int_X K(x, y) f(y) \, d\mu(y) \qquad (x \in X)$$

where (X, μ) is a measure space and $K \in L^2(X \times X, \mu \times \mu)$.

1.8. Let X be a normed space, and let $i_X \colon X \to X^{**}$ be the canonical embedding. Prove that for each operator $T \in \mathscr{B}(X, Y)$ the following diagram commutes.

$$\begin{array}{c} X \xrightarrow{**} T^{**} Y^{**} \\ i_X & & \uparrow i_Y \\ X \xrightarrow{T} Y \end{array}$$

- **1.9.** Let X be a normed space, and let $i_X \colon X \to X^{**}$ be the canonical embedding.
- (a) Find a relation between the operators $i_{X^*}: X^* \to X^{***}$ and $i_X^*: X^{***} \to X^*$.
- (b) Prove that a Banach space X is reflexive $\iff X^*$ is reflexive.
- (c) Deduce that ℓ^1 , ℓ^{∞} , $L^{\infty}[a, b]$ are not reflexive.

1.10. Let X and Y be Banach spaces, and let $S \in \mathscr{B}(Y^*, X^*)$. Do we always have $S = T^*$ for some $T \in \mathscr{B}(X, Y)$?

Let X be a normed space. Recall (see the lectures) that the annihilator of a subset $M \subset X$ and the preannihilator of a subset $N \subset X^*$ are given by

$$M^{\perp} = \{ f \in X^* : f(x) = 0 \ \forall x \in M \}, \quad ^{\perp}N = \{ x \in X : f(x) = 0 \ \forall f \in N \}.$$

The double annihilator theorem (see the lectures) asserts that for every $M \subset X$ we have $^{\perp}(M^{\perp}) = \overline{\operatorname{span}}(M)$ (the closure of the linear span). The following two exercises show that the "dual" formula $(^{\perp}N)^{\perp} = \overline{\operatorname{span}}(N)$ fails in general (unless X is reflexive).

1.11. Identify $(\ell^1)^*$ with ℓ^{∞} , and consider c_0 as a subspace of $(\ell^1)^*$. Find $\perp c_0$ and $(\perp c_0)^{\perp}$.

1.12. Let X be a nonreflexive Banach space. Prove that there exists a closed vector subspace $N \subset X^*$ such that $N \neq (^{\perp}N)^{\perp}$.

Recall (see the lectures) that for every bounded linear operator $T: X \to Y$ between normed spaces we have $\overline{\operatorname{Im} T} = {}^{\perp}(\operatorname{Ker} T^*)$. In particular, $\operatorname{Im} T$ is dense in Y iff T^* is injective. The following exercise shows that the "dual" statements fail in general (unless X is reflexive).

1.13. Give an example of an injective operator $T \in \mathscr{B}(X, Y)$ between Banach spaces X and Y such that Im T^* is not dense in X^* . (*Hint:* X must be nonreflexive, see above.) As a corollary, the equality $\overline{\text{Im}(T^*)} = (\text{Ker } T)^{\perp}$ fails.

1.14. Let X be a Banach space, and let $X_0 \subset X$ be a closed vector subspace. Prove that X is reflexive if and only if X_0 and X/X_0 are reflexive. (*Hint:* Johnson's lemma.)