Commutative Banach algebras and C^{*}-algebras. Spectral theory of operators on a Hilbert space

Exercises marked by "-B" are optional. If you solve such exercises, you will earn bonus points.
4.1. Recall that $C^{n}[0,1]$ is a Banach algebra under the norm $\|f\|=\sum_{k=0}^{n} \frac{\left\|f^{(k)}\right\|_{\infty}}{k!}$ (where $\|\cdot\|_{\infty}$ is the supremum norm). Describe the maximal spectrum and the Gelfand transform of $C^{n}[0,1]$.
4.2. Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$. The disk algebra $\mathscr{A}(\overline{\mathbb{D}})$ consists of those $f \in C(\overline{\mathbb{D}})$ that are holomorphic on \mathbb{D}. Show that $\mathscr{A}(\overline{\mathbb{D}})$ is a closed subalgebra of $C(\overline{\mathbb{D}})$. Describe the maximal spectrum and the Gelfand transform of $\mathscr{A}(\overline{\mathbb{D}})$.
4.3. Let $f, g \in \ell^{1}(\mathbb{Z})$. The convolution of f and g is the function $f * g$ on \mathbb{Z} given by

$$
\begin{equation*}
(f * g)(n)=\sum_{k \in \mathbb{Z}} f(k) g(n-k) \quad(n \in \mathbb{Z}) \tag{1}
\end{equation*}
$$

(a) Show that the series in (1) converges, that $f * g \in \ell^{1}(\mathbb{Z})$, and that $\ell^{1}(\mathbb{Z})$ is a commutative unital Banach algebra under convolution.
(b) Show that $\ell^{1}(\mathbb{Z})$ contains the group algebra $\mathbb{C Z}$ as a dense subalgebra.
(c) Describe the maximal spectrum and the Gelfand transform of $\ell^{1}(\mathbb{Z})$.

Hint to (\mathbf{c}) : each character χ of $\ell^{1}(\mathbb{Z})$ is uniquely determined by $\chi\left(\delta_{1}\right) \in \mathbb{C}$, where δ_{1} is the element of $\mathbb{C} \mathbb{Z}$ corresponding to $1 \in \mathbb{Z}$. Show that, if $\chi \neq 0$, then $\chi\left(\delta_{1}\right) \in \mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$.
4.4-B. Extend Exercise 4.3 to $\ell^{1}(G)$, where G is any (discrete) abelian group. (Hint: the maximal spectrum of $\ell^{1}(G)$ is homeomorphic to the dual group \widehat{G} of G, which consists of all group homomorphisms from G to \mathbb{T}.)
4.5. Show that
(a) $C^{n}[0,1]$ is a Banach $*$-algebra under the involution $f^{*}(t)=\overline{f(t)}(t \in[0,1])$, but is not a C^{*}-algebra unless $n=0$;
(b) $\mathscr{A}(\overline{\mathbb{D}})$ is a Banach $*$-algebra under the involution $f^{*}(z)=\overline{f(\bar{z})}(z \in \overline{\mathbb{D}})$, but is not a C^{*}-algebra;
(c) $\ell^{1}(\mathbb{Z})$ is a Banach $*$-algebra under the involution $f^{*}(n)=\overline{f(-n)}(n \in \mathbb{Z})$, but is not a C^{*}-algebra.
4.6-B. (a) Does there exist a norm and an involution on $C^{1}[a, b]$ making it into a C^{*}-algebra?
(b) Does there exist a norm and an involution on $\mathscr{A}(\overline{\mathbb{D}})$ making it into a C^{*}-algebra?
(c) Does there exist a norm and an involution on $\ell^{1}(\mathbb{Z})$ making it into a C^{*}-algebra?

Remark. In 3.8 ($\mathrm{a}, \mathrm{b}, \mathrm{c}$), we do not assume that the new norm is equivalent to the original norm.
4.7. Let $\alpha \in \ell^{\infty}$, and let M_{α} denote the respective diagonal operator on ℓ^{2}. Show that for each $f \in C\left(\sigma\left(M_{\alpha}\right)\right)$ we have $f\left(M_{\alpha}\right)=M_{f \circ \alpha}$.
4.8. Let (X, μ) be a σ-finite measure space, let $\varphi: X \rightarrow \mathbb{C}$ be an essentially bounded measurable function, and let M_{φ} denote the respective multiplication operator on $L^{2}(X, \mu)$. Show that for each $f \in C\left(\sigma\left(M_{\varphi}\right)\right)$ we have $f\left(M_{\varphi}\right)=M_{f \circ \varphi}$ (in particular, give a precise meaning to the expression $f \circ \varphi$).
4.9. Extend the results of Exercises 4.7 and 4.8 to the Borel functional calculus.
4.10. Let A be a unital C^{*}-algebra, and let $u \in A$ be a unitary element. Show that $\sigma(u) \subset \mathbb{T}$ (where $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\})$.
4.11. Let A be a unital C^{*}-algebra.
(a) Prove that for each selfadjoint element $a \in A$ the element $u=\exp (i a)$ is unitary.
(b) Prove that if $u \in A$ is a unitary element such that $\sigma(u) \neq \mathbb{T}$, then there exists a selfadjoint element $a \in A$ such that $u=\exp (i a)$.
(c) Does (b) hold if $\sigma(u)=\mathbb{T}$?
4.12. Show that for each unitary operator U on a Hilbert space H there exists a bounded selfadjoint operator T on H such that $U=\exp (i T)$ (compare with Exercise 4.11 (c)).

Hint: the function $[0,2 \pi) \rightarrow \mathbb{T}, t \mapsto \exp (i t)$, is a Borel bijection.
4.13. Show that a compact selfadjoint operator T is cyclic
(a) if and
(b) only if all the eigenvalues of T have multiplicity 1 .
4.14. Let $\varphi:[a, b] \rightarrow \mathbb{R}$ be a strictly monotone, continuous function. Prove that the multiplication operator $M_{\varphi}: L^{2}[a, b] \rightarrow L^{2}[a, b]$ is cyclic.
4.15. Let T denote the operator on $L^{2}[0,1]$ defined by $(T f)(t)=\sqrt{t} f(t)$. Find explicitly a positive Radon measure μ on $[0,1]$ and a unitary isomorphism $U: L^{2}[0,1] \rightarrow L^{2}([0,1], \mu)$ which establishes a unitary equivalence between T and the multiplication operator M_{t} given by $\left(M_{t} f\right)(t)=t f(t)$.
4.16. (a) Show that a bounded operator P on a Hilbert space is an orthogonal projection if and only if $P=P^{*}=P^{2}$.
(b) By using the spectral theorem, prove that a bounded normal operator P such that $\sigma(P) \subset\{0,1\}$ is an orthogonal projection.
(c) Prove (b) without using the spectral theorem.
4.17-B. Let T be a cyclic selfadjoint operator on a Hilbert space H. Prove that an operator $S \in$ $\mathscr{B}(H)$ commutes with T if and only if there exists a bounded Borel function $f: \sigma(T) \rightarrow \mathbb{C}$ such that $S=f(T)$.
4.18-B. Let H be an infinite-dimensional separable Hilbert space. Prove that $\mathscr{K}(H)$ is a unique closed two-sided ideal of $\mathscr{B}(H)$ different from 0 and $\mathscr{B}(H)$.

Hint. Let $0 \neq I \subset \mathscr{B}(H)$ be a two-sided ideal. Recall the standard proof of the simplicity of the matrix algebra $M_{n}(\mathbb{C})$, and apply the same argument to show that I contains all finite rank operators. If I contains at least one noncompact operator, apply the spectral theorem.

