
17.04.2021 Functional Analysis 2 (Operator Theory) Exercise sheet 4

Commutative Banach algebras and C∗-algebras.
Spectral theory of operators on a Hilbert space

Exercises marked by “-B” are optional. If you solve such exercises, you will earn bonus points.

4.1. Recall that Cn[0, 1] is a Banach algebra under the norm ∥f∥ =
∑n

k=0
∥f (k)∥∞

k!
(where ∥ · ∥∞ is

the supremum norm). Describe the maximal spectrum and the Gelfand transform of Cn[0, 1].

4.2. Let D = {z ∈ C : |z| < 1}. The disk algebra A (D̄) consists of those f ∈ C(D̄) that are
holomorphic on D. Show that A (D̄) is a closed subalgebra of C(D̄). Describe the maximal spectrum
and the Gelfand transform of A (D̄).

4.3. Let f, g ∈ ℓ1(Z). The convolution of f and g is the function f ∗ g on Z given by

(f ∗ g)(n) =
∑
k∈Z

f(k)g(n− k) (n ∈ Z). (1)

(a) Show that the series in (1) converges, that f ∗ g ∈ ℓ1(Z), and that ℓ1(Z) is a commutative unital
Banach algebra under convolution.
(b) Show that ℓ1(Z) contains the group algebra CZ as a dense subalgebra.
(c) Describe the maximal spectrum and the Gelfand transform of ℓ1(Z).
Hint to (c): each character χ of ℓ1(Z) is uniquely determined by χ(δ1) ∈ C, where δ1 is the element
of CZ corresponding to 1 ∈ Z. Show that, if χ ̸= 0, then χ(δ1) ∈ T = {z ∈ C : |z| = 1}.

4.4-B. Extend Exercise 4.3 to ℓ1(G), where G is any (discrete) abelian group. (Hint: the maximal

spectrum of ℓ1(G) is homeomorphic to the dual group Ĝ of G, which consists of all group homomor-
phisms from G to T.)

4.5. Show that
(a) Cn[0, 1] is a Banach ∗-algebra under the involution f ∗(t) = f(t) (t ∈ [0, 1]), but is not a
C∗-algebra unless n = 0;
(b) A (D̄) is a Banach ∗-algebra under the involution f ∗(z) = f(z̄) (z ∈ D̄), but is not a C∗-algebra;
(c) ℓ1(Z) is a Banach ∗-algebra under the involution f ∗(n) = f(−n) (n ∈ Z), but is not a C∗-algebra.

4.6-B. (a) Does there exist a norm and an involution on C1[a, b] making it into a C∗-algebra?
(b) Does there exist a norm and an involution on A (D̄) making it into a C∗-algebra?
(c) Does there exist a norm and an involution on ℓ1(Z) making it into a C∗-algebra?

Remark. In 3.8 (a,b,c), we do not assume that the new norm is equivalent to the original norm.

4.7. Let α ∈ ℓ∞, and let Mα denote the respective diagonal operator on ℓ2. Show that for each
f ∈ C(σ(Mα)) we have f(Mα) = Mf◦α.

4.8. Let (X,µ) be a σ-finite measure space, let φ : X → C be an essentially bounded measurable
function, and let Mφ denote the respective multiplication operator on L2(X,µ). Show that for each
f ∈ C(σ(Mφ)) we have f(Mφ) = Mf◦φ (in particular, give a precise meaning to the expression f ◦φ).

4.9. Extend the results of Exercises 4.7 and 4.8 to the Borel functional calculus.

4.10. Let A be a unital C∗-algebra, and let u ∈ A be a unitary element. Show that σ(u) ⊂ T (where
T = {z ∈ C : |z| = 1}).
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4.11. Let A be a unital C∗-algebra.
(a) Prove that for each selfadjoint element a ∈ A the element u = exp(ia) is unitary.
(b) Prove that if u ∈ A is a unitary element such that σ(u) ̸= T, then there exists a selfadjoint
element a ∈ A such that u = exp(ia).
(c) Does (b) hold if σ(u) = T?

4.12. Show that for each unitary operator U on a Hilbert space H there exists a bounded selfadjoint
operator T on H such that U = exp(iT ) (compare with Exercise 4.11 (c)).

Hint: the function [0, 2π) → T, t 7→ exp(it), is a Borel bijection.

4.13. Show that a compact selfadjoint operator T is cyclic (a) if and (b) only if all the
eigenvalues of T have multiplicity 1.

4.14. Let φ : [a, b] → R be a strictly monotone, continuous function. Prove that the multiplication
operator Mφ : L

2[a, b] → L2[a, b] is cyclic.

4.15. Let T denote the operator on L2[0, 1] defined by (Tf)(t) =
√
tf(t). Find explicitly a positive

Radon measure µ on [0, 1] and a unitary isomorphism U : L2[0, 1] → L2([0, 1], µ) which establishes a
unitary equivalence between T and the multiplication operator Mt given by (Mtf)(t) = tf(t).

4.16. (a) Show that a bounded operator P on a Hilbert space is an orthogonal projection if and
only if P = P ∗ = P 2.
(b) By using the spectral theorem, prove that a bounded normal operator P such that σ(P ) ⊂ {0, 1}
is an orthogonal projection.
(c) Prove (b) without using the spectral theorem.

4.17-B. Let T be a cyclic selfadjoint operator on a Hilbert space H. Prove that an operator S ∈
B(H) commutes with T if and only if there exists a bounded Borel function f : σ(T ) → C such that
S = f(T ).

4.18-B. Let H be an infinite-dimensional separable Hilbert space. Prove that K (H) is a unique
closed two-sided ideal of B(H) different from 0 and B(H).

Hint. Let 0 ̸= I ⊂ B(H) be a two-sided ideal. Recall the standard proof of the simplicity of
the matrix algebra Mn(C), and apply the same argument to show that I contains all finite rank
operators. If I contains at least one noncompact operator, apply the spectral theorem.
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