Topological vector spaces

Exercises marked by "-B" are optional. If you solve such exercises, you will earn bonus points.

3.1. Let X and Y be topological vector spaces. Show that

(a) a linear operator $X \to Y$ is continuous iff it is continuous at 0;

(b) the set $\mathscr{L}(X, Y)$ of continuous linear operators from X to Y is a vector subspace of the space of all linear operators from X to Y.

3.2. Is there at least one continuous norm on the following topological vector spaces?

(a) \mathbb{K}^X (where X is a set); (b) C(X) (where X is a metrizable topological space);

(c) the space $\mathscr{O}(U)$ of holomorphic functions on an open set $U \subset \mathbb{C}$ (we equip $\mathscr{O}(U)$ with the topology induced from C(U));

(d) $C^{\infty}[a,b]$; (e) $C^{\infty}(U)$, where $U \subset \mathbb{R}^n$ is an open set; (f) $\mathscr{S}(\mathbb{R}^n)$.

3.3. Let X be a Hausdorff locally convex space, and let P be a defining family of seminorms on X. Show that X is normable iff P is equivalent to a finite subfamily $P_0 \subset P$.

3.4. (a)-(f) Which spaces of Exercise 3.2 are normable?

3.5. Let X be a Hausdorff locally convex space, and let P be a defining family of seminorms on X. Show that X is metrizable iff P is equivalent to an at most countable subfamily $P_0 \subset P$.

Hint. If $(p_n)_{n \in \mathbb{N}}$ is a sequence of seminorms, then the function

$$\rho(x,y) = \sum_{n} \frac{1}{2^{n}} \min\{p_{n}(x-y), 1\} \text{ or, if you like, } \rho(x,y) = \sum_{n} \frac{1}{2^{n}} \frac{p_{n}(x-y)}{1+p_{n}(x-y)}$$

satisfies the triangle inequality.

3.6. (a)-(f) Which spaces of Exercise 3.2 are metrizable?

3.7-B. Let X be a finite-dimensional vector space. Show that there is only one topology on X making X into a Hausdorff locally convex space.

3.8. Let X be a set. Prove that for each $f \in \mathbb{K}^X$ the multiplication operator $M_f \colon \mathbb{K}^X \to \mathbb{K}^X$, $M_f(g) = fg$, is continuous.

3.9. Let $U \subset \mathbb{R}^n$ be an open set. Prove that each linear differential operator $\sum_{|\alpha| \leq N} a_{\alpha} D^{\alpha}$ on $C^{\infty}(U)$ (where $a_{\alpha} \in C^{\infty}(U)$) is continuous.

3.10. Let $\mathbb{D}_R = \{z \in \mathbb{C} : |z| < R\}$. Given $f \in \mathscr{O}(\mathbb{D}_R)$, let $c_n(f) = f^{(n)}(0)/n!$. Show that the topology of compact convergence on $\mathscr{O}(\mathbb{D}_R)$ is generated by the family $\{\|\cdot\|_{r,\infty} : 0 < r < R\}$ of seminorms, where $\|f\|_{r,\infty} = \sup_{n \ge 0} |c_n(f)| r^n$.

3.11. Recall (see the lectures) that the standard topology on the Schwartz space $\mathscr{S}(\mathbb{R})$ is given by the family $\{\|\cdot\|_{k,\ell} : k, \ell \in \mathbb{Z}_{\geq 0}\}$ of seminorms, where $\|\varphi\|_{k,\ell} = \sup_{x \in \mathbb{R}} |x^k \varphi^{(\ell)}(x)|$. Show that the following families of seminorms generate the same topology on $\mathscr{S}(\mathbb{R})$:

(a) $\{ \| \cdot \|_{\infty}^{(p)} : p \in \mathbb{Z}_{\geq 0} \}$, where $\| \varphi \|_{\infty}^{(p)} = \sup_{k \leq p, x \in \mathbb{R}} (1 + x^2)^{p/2} | \varphi^{(k)}(x) |$;

(b) $\{ \| \cdot \|_1^{(p)} : p \in \mathbb{Z}_{\geq 0} \}$, where $\| \varphi \|_1^{(p)} = \max_{k \leq p} \int_{\mathbb{R}} (1+x^2)^{p/2} |\varphi^{(k)}(x)| dx$.

3.12-B. The space $s(\mathbb{Z})$ of rapidly decreasing sequences is defined as follows:

$$s(\mathbb{Z}) = \Big\{ x = (x_n) \in \mathbb{K}^{\mathbb{Z}} : \|x\|_k = \sum_{n \in \mathbb{Z}} |x_n| |n|^k < \infty \ \forall k \in \mathbb{Z}_{\geq 0} \Big\}.$$

The standard topology on $s(\mathbb{Z})$ is determined by the family $\{\|\cdot\|_k : k \in \mathbb{Z}_{\geq 0}\}$ of norms. Topologize the space $C^{\infty}(S^1)$ (by analogy with $C^{\infty}[a, b]$), and construct a topological isomorphism $C^{\infty}(S^1) \cong s(\mathbb{Z})$. (*Hint:* the isomorphism takes each $f \in C^{\infty}(S^1)$ to the sequence of its Fourier coefficients.)

3.13-B. Let (X, μ) be a finite measure space, and let $L^0(X, \mu)$ denote the space of equivalence classes of measurable functions on X (two functions are equivalent if they are equal μ -almost everywhere). For each $f, g \in L^0(X, \mu)$ we let

$$\rho(f,g) = \int_X \min\{|f-g|,1\} \, d\mu.$$

Prove that

(a) ρ is a metric making $L^0(X,\mu)$ into a topological vector space;

- (b) a sequence of measurable functions converges in $L^0(X,\mu)$ iff it converges in measure;
- (c) $(L^0[0,1])^* = 0.$

3.14. Let $\langle X, Y \rangle$ be a dual pair of vector spaces. Show that

(a) $\dim X < \infty \iff \dim Y < \infty \iff$ the weak topology $\sigma(X, Y)$ is normable;

(b) the weak topology $\sigma(X, Y)$ is metrizable \iff the dimension of Y is at most countable;

(c) the weak topology on an infinite-dimensional normed space and the weak^{*} topology on the dual of an infinite-dimensional Banach space are not metrizable.

3.15. Describe all continuous linear functionals on \mathbb{K}^X (where X is a set), and show that the weak topology on \mathbb{K}^X is identical to the original topology.

3.16. Let $e_n = (0, \ldots, 0, 1, 0, \ldots)$, where 1 is in the *n*th slot. Does (e_n) converge weakly in c_0 and in ℓ^p $(1 \leq p < \infty)$?

3.17. Give an example of a discontinuous linear operator T between Hausdorff locally convex spaces X and Y such that T is continuous w.r.t. the weak topologies on X and Y.

3.18. (a) Give an example of a Banach space X and a norm closed vector subspace $Y \subset X^*$ that is not weakly^{*} closed.

(b) Show that, if X is nonreflexive, then X^* contains a subspace Y satisfying (a).

3.19-B. Show that each weakly convergent sequence in ℓ^1 is norm convergent.