Compact operators

Exercises marked by "-B" are optional. If you solve such exercises, you will earn bonus points.

- **1.1.** Let X be a normed space, let $f \in X^* \setminus \{0\}$, and let $X_0 = \text{Ker } f$. Show that there exists a 0-perpendicular to X_0 in X iff f is norm-attaining (which means that there exists $x \in X$, ||x|| = 1, such that |f(x)| = ||f||). Give an example showing that this is not always the case.
- **1.2.** (a) Prove that a subset $S \subset c_0$ is relatively compact iff there exists $y \in c_0$ such that $|x_n| \leq |y_n|$ for all $x \in S$ and all $n \in \mathbb{N}$. (b) Does a similar result hold for ℓ^p ?
- **1.3.** Are the left and right shift operators on ℓ^p and on c_0 compact?
- **1.4.** Can the image of a compact operator between Banach spaces contain an infinite-dimensional closed vector subspace?
- **1.5.** Prove that the inclusion $C^1[a,b] \to C[a,b]$ is a compact operator.
- **1.6.** (a) Let $f \in C[a, b]$, and let M_f denote the respective multiplication operator on C[a, b]. Find a condition on f that is necessary and sufficient for M_f to be compact.
- (b) Let $I \subset \mathbb{R}$ be an interval (not necessarily open or closed, not necessarily bounded), let $f: I \to \mathbb{C}$ be an essentially bounded measurable function, and let M_f denote the respective multiplication operator on $L^p(I)$ $(1 \le p \le \infty)$. Find a condition on f that is necessary and sufficient for M_f to be compact.
- **1.7.** Given an integrable function f on [0,1], define a function Tf on [0,1] by

$$(Tf)(x) = \int_0^x f(t) dt.$$

Is T a compact operator (a) from C[0,1] to C[0,1]? (b) from $L^p[0,1]$ to C[0,1] (where $1)? (c) from <math>L^p[0,1]$ to $L^p[0,1]$ (where $1)? (d) from <math>L^1[0,1]$ to C[0,1]? (e) from $L^1[0,1]$ to $L^1[0,1]$?

1.8. Let I = [a, b], and let $K \in C(I \times I)$. Prove that the integral operator $T: C(I) \to C(I)$,

$$(Tf)(x) = \int_a^b K(x, y) f(y) \, dy,$$

is compact.

1.9. Let (X, μ) be a measure space, and let $K \in L^2(X \times X, \mu \times \mu)$. Prove that the *Hilbert-Schmidt* integral operator $T_K: L^2(X, \mu) \to L^2(X, \mu)$,

$$(T_K f)(x) = \int_X K(x, y) f(y) d\mu(y),$$

is compact.

Hint: show that functions of the form K(x,y) = f(x)g(y), where $f,g \in L^2(X,\mu)$, span a dense subspace of $L^2(X \times X, \mu \times \mu)$, and use the fact that $||T_K|| \leq ||K||_2$ (see Exercise 2.8).

- **1.10.** (a) Let X be a compact metrizable topological space, let $K \in C(X \times X)$, and let μ be a finite Borel measure on X. Show that the image of the Hilbert–Schmidt integral operator $T_K \colon L^2(X,\mu) \to L^2(X,\mu)$ is contained in C(X), and that T_K is a compact operator from $L^2(X,\mu)$ to C(X).
- (b)-B Extend (a) to an arbitrary (not necessarily metrizable) compact topological space X.