Spectra

This exercise sheet is meant to be discussed at the blackboard during a "traditional" seminar, and is also intended for self-study (that is, is plays no role in the grading). Nevertheless, it is strongly recommended to look at it before the exam.

5.1. Show that for each subset $S \subset \mathbb{C}$ there exist a unital algebra A and $a \in A$ such that $\sigma_A(a) = S$. (Do not forget about $S = \emptyset$.)

5.2. Show that for each nonempty compact subset $K \subset \mathbb{C}$ there exists a bounded linear operator T on a Banach space such that $\sigma(T) = K$.

5.3. Prove that the spectrum of a bijective isometry on a Banach space is contained in $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$.

5.4. Find the point spectrum, the continuous spectrum, and the residual spectrum of the diagonal operator on ℓ^{∞} .

5.5. Let (X, μ) be a measure space, and let $f: X \to \mathbb{C}$ be a measurable function. Recall (see the lectures) that $\lambda \in \mathbb{C}$ is an *essential value* of f if for each neighborhood $U \ni \lambda$ we have $\mu(f^{-1}(U)) > 0$. The set of all essential values of f is called the *essential range* of f. Also recall (see the lectures) that, if f is essentially bounded, then the spectrum $\sigma_{L^{\infty}(X,\mu)}(f)$ is equal to the essential range of f. (a) Show that f(X) is not necessarily contained in the essential range of f.

(b) Show that the essential range of f is not necessarily contained in f(X).

(c) Show that, if X = [a, b] or $X = \mathbb{T}$ with the Lebesgue measure, and if f is continuous, then the essential range of f is equal to f(X).

5.6. Let (X, μ) be a σ -finite measure space, f be an essentially bounded measurable function on X, and M_f be the multiplication operator on $L^p(X, \mu)$ acting by the rule $g \mapsto fg$ (where $1 \le p \le \infty$). Find the point spectrum, the continuous spectrum, and the residual spectrum of M_f . Pay special attention to the case of $M_t: L^2[0, 1] \to L^2[0, 1], (M_tg)(t) = tg(t)$.

5.7. Find the point spectrum, the continuous spectrum, and the residual spectrum of the operator $T: L^2[-\pi,\pi] \to L^2[-\pi,\pi]$ acting by the rule

$$(Tf)(t) = \int_{-\pi}^{\pi} \sin^2(t-s)f(s) \, ds.$$

(*Hint*: replace T by a unitary equivalent operator on $\ell^2(\mathbb{Z})$.)

5.8. Find the point spectrum, the continuous spectrum, and the residual spectrum of the left and right shift operators on (a) c_0 ; (b) ℓ^1 ; (c)-B ℓ^{∞} .

5.9. Given $\zeta \in \mathbb{T}$, define the shift operator $T_{\zeta} \colon L^2(\mathbb{T}) \to L^2(\mathbb{T})$ by $(T_{\zeta}f)(z) = f(\zeta^{-1}z)$. Find the point spectrum, the continuous spectrum, and the residual spectrum of T_{ζ} .

5.10 (the Volterra operator). Let I = [a, b], let $H = L^2(I)$, and let $K \in L^2(I \times I)$. The Volterra operator $V_K \colon L^2(I) \to L^2(I)$ is given by

$$(V_K f)(x) = \int_a^x K(x, y) f(y) \, dy$$

(a) Prove that V_K is quasinilpotent whenever K is bounded.

(b)-B Prove that V_K is quasinilpotent for each $K \in L^2(I \times I)$.