
16.11.2020 Introduction to Functional Analysis Exercise sheet 4

Duality for normed spaces

4.1. Recall from the lectures that if 1 < p, q < +∞ and 1/p + 1/q = 1, then there exists an
isometric isomorphism ℓq ∼−→ (ℓp)∗. By using a similar argument, construct isometric isomorphisms
(a) ℓ∞ ∼−→ (ℓ1)∗; (b) ℓ1 ∼−→ (c0)

∗. Does this approach give an isometric isomorphism ℓ1 ∼= (ℓ∞)∗?

4.2. Describe explicitly the duals of the following operators:
(a) the diagonal operator on ℓp (where 1 6 p < ∞) or on c0;
(b) the right shift operator on ℓp (where 1 6 p < ∞) or on c0;
(c) the operator of “taking the primitive” on L2[0, 1] (see Exercise 2.6);
(d) the Hilbert-Schmidt integral operator on L2(X,µ) (see Exercise 2.8).

4.3-B. Prove that c0 is not isomorphic to the dual of a normed space.

4.4. Let X be a normed space.
(a) Prove that if X∗ is separable, then so is X.
(b) Is the converse true?
(c) Prove that there is no topological isomorphism between (ℓ∞)∗ and ℓ1.

4.5. Let X be a normed space, and let iX : X → X∗∗ be the canonical embedding. Prove that for
each operator T ∈ B(X, Y ) the following diagram commutes.

X∗∗ T ∗∗
// Y ∗∗

X
T //

iX

OO

Y

iY

OO

4.6. Prove that the composition of the canonical embedding c0 → (c0)
∗∗ and the standard isomor-

phism (c0)
∗∗ ∼= ℓ∞ is the inclusion of c0 into ℓ∞. Deduce that c0 is not reflexive.

4.7. Prove that (a) a Hilbert space is reflexive; (b) ℓ1 is not reflexive; (c) L1[a, b] is not
reflexive; (d) C[a, b] is not reflexive.

4.8. Let X be a normed space, and let iX : X → X∗∗ be the canonical embedding. Find a relation
between the operators iX∗ : X∗ → X∗∗∗ and i∗X : X∗∗∗ → X∗.

4.9. (a) Prove that a Banach space X is reflexive ⇐⇒ X∗ is reflexive.
(b) Deduce that ℓ1, ℓ∞, L∞[a, b] are not reflexive.

4.10. Let X and Y be Banach spaces, and let S ∈ B(Y ∗, X∗). Do we always have S = T ∗ for some
T ∈ B(X, Y )?

4.11. Identify (ℓ1)∗ with ℓ∞ (see Exercise 4.1), and consider c0 as a subspace of (ℓ1)∗. Find ⊥c0 and
(⊥c0)

⊥.

4.12. LetX be a nonreflexive Banach space. Prove that there exists a closed vector subspaceN ⊆ X∗

such that N ̸= (⊥N)⊥.

4.13. Give an example of an injective operator T ∈ B(X, Y ) between Banach spaces X and Y such
that ImT ∗ is not dense in X∗. (Hint: X must be nonreflexive, see the lectures.) As a corollary, the
equality Im(T ∗) = (KerT )⊥ can fail in the nonreflexive case.

4.14. Let X be a normed space, and let X0 ⊂ X be a closed vector subspace. Construct isometric
isomorphisms (X/X0)

∗ ∼= X⊥
0 and X∗

0
∼= X∗/X⊥

0 . (Hint: use the universal property of quotients.)
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The three basic principles of Functional Analysis

(Hahn-Banach, Banach-Steinhaus, Open Mapping Theorem)

4.15. Let X = R2 equipped with the norm ∥ · ∥p, and let X0 = {(x, 0) : x ∈ R} ⊂ X. Define a
linear functional f0 : X0 → R by f0(x, 0) = x. We clearly have ∥f0∥ = 1. Describe all “Hahn-Banach
extensions” of f0, i.e., all linear functionals f : X → R such that f |X0 = f0 and ∥f∥ = 1. (Consider
all possible p ∈ [1,+∞].)

4.16. Give an example of a normed space X and a pointwise bounded sequence (fn) in X∗ such that
(fn) is not norm bounded.

4.17. Let X, Y, Z be normed spaces.
(a) Prove that a bilinear operator T : X × Y → Z is continuous if and only if there exists C > 0
such that ∥T (x, y)∥ 6 C∥x∥∥y∥ for all x ∈ X, y ∈ Y .
(b) Assume that either X or Y is complete. Prove that each separately continuous bilinear operator
X × Y → Z is continuous. (The separate continuity means that for each x0 ∈ X, y0 ∈ Y the maps
Y → Z, y 7→ T (x0, y), and X → Z, x 7→ T (x, y0), are continuous.) Hint: use the Uniform
Boundedness Principle.
(c) Does (b) hold without the completeness assumption?

4.18-B. Let G be a compact topological group, and let π be a representation of G on a Banach
space X. Suppose that π is continuous in the sense that the map G × X → X, (g, x) 7→ π(g)x, is
continuous. Prove that there exists an equivalent norm ∥ · ∥π on X such that all the operators π(g)
are isometric with respect to ∥ · ∥π. (Warning: this has nothing to do with the Haar measure!).

4.19. (a) Deduce the Open Mapping Theorem from the Inverse Mapping Theorem.
(b) Deduce the Inverse Mapping Theorem from the Closed Graph Theorem.
(c)-B Deduce the Uniform Boundedness Principle from the Closed Graph Theorem.

4.20. (a) Give an example of a Banach space X, a normed space Y , and a bijective operator
T ∈ B(X, Y ) such that T−1 is unbounded.
(b)-B Give an example of a normed space X, a Banach space Y , and a bijective operator T ∈
B(X,Y ) such that T−1 is unbounded.

4.21. Let ∥ · ∥ be a norm on L1(R) such that (L1(R), ∥ · ∥) is complete and such that the convergence
fn → f with respect to ∥ · ∥ implies that

∫ t

−∞ fn(s) ds →
∫ t

−∞ f(s) ds for all t ∈ R. Prove that ∥ · ∥
is equivalent to the usual L1-norm.
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