Hilbert spaces

Exercises marked by "-B" are optional. If you solve such exercises, you will earn bonus points.
3.1. Show that the norm on the spaces $\left(\mathbb{C}^{n},\|\cdot\|_{p}\right), \ell^{p},\left(C[a, b],\|\cdot\|_{p}\right), L^{p}(X, \mu)$ (where (X, μ) is a measure space containing at least two disjoint measurable sets of positive measure) is not generated by an inner product (unless $n=1, p=2$).
3.2. Generalize the parallelogram rule to n vectors.
3.3. Show that the norm on the spaces $\ell^{p},\left(C[a, b],\|\cdot\|_{p}\right), L^{p}(X, \mu)$ (where (X, μ) is a measure space containing infinitely many disjoint measurable sets of positive measure) is not equivalent to a norm generated by an inner product (unless $p=2$).
3.4. Consider the vector space $H=C[-1,1]$ with the inner product $\langle f \mid g\rangle=\int_{-1}^{1} f(t) \overline{g(t)} d t$. Let

$$
H_{0}=\left\{f \in H: \int_{-1}^{0} f(t) d t=\int_{0}^{1} f(t) d t\right\}
$$

(a) Prove that H_{0} is a closed vector subspace of H.
(b) Does the equality $H=H_{0} \oplus H_{0}^{\perp}$ hold?
3.5. Prove that every incomplete inner product space H has a closed vector subspace H_{0} such that $H_{0} \oplus H_{0}^{\perp} \neq H$.
3.6. Let $C_{c}^{\infty}(a, b)$ be the space of smooth compactly supported functions on the interval (a, b). Prove that for each $p \in[1, \infty) C_{c}^{\infty}(a, b)$ is dense in $L^{p}[a, b]$.
Definition 3.1. Let $f \in L^{2}[a, b]$. A function $f^{\prime} \in L^{2}[a, b]$ is a weak derivative of f if

$$
\int_{a}^{b} f^{\prime} \varphi d t=-\int_{a}^{b} f \varphi^{\prime} d t
$$

for all $\varphi \in C_{c}^{\infty}(a, b)$.
3.7. Prove that if $f \in L^{2}[a, b]$ has a weak derivative f^{\prime}, then f^{\prime} is unique (as an element of $L^{2}[a, b]$).
3.8 (the Sobolev space). Let $W^{1,2}(a, b)$ denote the space of all $f \in L^{2}[a, b]$ that have a weak derivative $f^{\prime} \in L^{2}[a, b]$. Prove that $W^{1,2}(a, b)$ is a Hilbert space with respect to the inner product

$$
\langle f \mid g\rangle=\int_{a}^{b}\left(f \bar{g}+f^{\prime} \bar{g}^{\prime}\right) d t
$$

3.9 (the Hardy space). Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$, and let H^{2} denote the space of holomorphic functions $f: \mathbb{D} \rightarrow \mathbb{C}$ satisfying the following condition:

$$
\|f\|=\sup _{0<r<1}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \varphi}\right)\right|^{2} d \varphi\right)^{1 / 2}<\infty
$$

Show that the map $f \mapsto\left(c_{n}(f)\right)_{n \geqslant 0}$ (where $c_{n}(f)$ is the nth Taylor coefficient of f at 0) is an isometric isomorphism of $\left(H^{2},\|\cdot\|\right)$ onto $\ell^{2}\left(\mathbb{Z}_{\geqslant 0}\right)$. Hence H^{2} is a Hilbert space.
3.10-B (the Bergman space). Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$, and let $L_{a}^{2}(\mathbb{D})$ denote the space of holomorphic functions $f: \mathbb{D} \rightarrow \mathbb{C}$ satisfying the following condition:

$$
\|f\|=\left(\int_{\mathbb{D}}|f(x+i y)|^{2} d x d y\right)^{1 / 2}<\infty
$$

Show that $L_{a}^{2}(\mathbb{D})$ is a closed vector subspace of $L^{2}(\mathbb{D})$. Hence $L_{a}^{2}(\mathbb{D})$ is a Hilbert space.

