Linear operators

2.1. Let X, Y be normed spaces. Suppose that X is finite-dimensional. Prove that each linear operator $T: X \rightarrow Y$ is bounded.
2.2. Choose $t_{0} \in[a, b]$, and consider the linear functional

$$
F:\left(C[a, b],\|\cdot\|_{p}\right) \rightarrow \mathbb{K}, \quad F(f)=f\left(t_{0}\right) .
$$

(a) Find all $p \in[1,+\infty]$ such that F is bounded.
(b) Find $\|F\|$.
2.3. Define a linear functional F on $\left(C[0,1],\|\cdot\|_{\infty}\right)$ by

$$
F(f)=2 f(0)-3 f(1)+\int_{0}^{1} f(t) d t
$$

(a) Prove that F is bounded. (b) Find $\|F\|$.
2.4 (the multiplication operator on $C(I))$. Let $I=[a, b]$, and let $f \in C(I)$. For each $p \in[1,+\infty]$, define $M_{f}: C(I) \rightarrow C(I)$ by

$$
M_{f}(g)=f g \quad(g \in C(I))
$$

(a) Prove that M_{f} is bounded.
(b) Find $\left\|M_{f}\right\|$.

Hint: consider separately the cases $p=\infty$ and $p<\infty$.
2.5 (the multiplication operator on $\left.L^{p}\right)$. Let (X, μ) be a σ-finite measure space, and let $f: X \rightarrow \mathbb{K}$ be an essentially bounded measurable function. For each $p \in[1,+\infty]$, define $M_{f}: L^{p}(X, \mu) \rightarrow L^{p}(X, \mu)$ by

$$
M_{f}(g)=f g \quad\left(g \in L^{p}(X, \mu)\right)
$$

(a) Prove that M_{f} is bounded. (b) Find $\left\|M_{f}\right\|$.
2.6. Let X be either $L^{p}[0,1](1 \leqslant p<+\infty)$ or $C[0,1]$. Define $T: X \rightarrow X$ by

$$
(T f)(x)=\int_{0}^{x} f(t) d t \quad(f \in X)
$$

(a) Prove that T is bounded. Find $\|T\|$ in the cases where (b) $X=C[0,1]$ and (c) $X=L^{1}[0,1]$. Remark. If the above operator T acts on $L^{2}[0,1]$, then $\|T\|=2 / \pi$. We will be able to prove this in due course.
2.7 (the integral operator on $C(I))$. Let $I=[a, b]$, and let $K \in C(I \times I)$. Define $T: C(I) \rightarrow C(I)$ by

$$
(T f)(x)=\int_{a}^{b} K(x, y) f(y) d y
$$

Prove that T takes $C(I)$ to $C(I)$, that T is bounded, and that $\|T\| \leqslant\|K\|_{\infty}(b-a)$.
2.8 (the Hilbert-Schmidt integral operator). Let (X, μ) be a σ-finite measure space, and let $K \in$ $L^{2}(X \times X, \mu \times \mu)$. Define $T: L^{2}(X, \mu) \rightarrow L^{2}(X, \mu)$ by

$$
(T f)(x)=\int_{X} K(x, y) f(y) d \mu(y)
$$

Prove that the above integral exists for almost all $x \in X$, that T takes $L^{2}(X, \mu)$ to $L^{2}(X, \mu)$, that T is bounded, and that $\|T\| \leqslant\|K\|_{2}$.

Banach spaces

2.9. Show that c_{0} is a closed vector subspace of ℓ^{∞}. As a consequence, c_{0} is a Banach space.
2.10. Show that $\left(c_{00},\|\cdot\|_{p}\right)$ is not complete for each $p \in[1,+\infty]$, Show that $\left(\ell^{p},\|\cdot\|_{q}\right)$ is not complete if $q>p$. Describe the completions of these spaces.
2.11. Show that the dimension of an infinite-dimensional Banach space is uncountable.
2.12. For each $p<\infty$, construct a Cauchy sequence in $\left(C[a, b],\|\cdot\|_{p}\right)$ which does not converge. Describe the completion of $\left(C[a, b],\|\cdot\|_{p}\right)$.
2.13. (a) Prove that $C^{n}[a, b]$ is a Banach space with respect to the norm $\|f\|=\max _{0 \leqslant k \leqslant n}\left\|f^{(k)}\right\|_{\infty}$. (b) Is $C^{n}[a, b]$ complete with respect to the sup-norm? Describe the completion of this space.
2.14. Let (X, μ) be a measure space. Prove that $L^{\infty}(X, \mu)$ is a Banach space.

