Linear operators

2.1. Let X, Y be normed spaces. Suppose that X is finite-dimensional. Prove that each linear operator $T: X \to Y$ is bounded.

2.2. Choose $t_0 \in [a, b]$, and consider the linear functional

 $F\colon (C[a,b], \|\cdot\|_p) \to \mathbb{K}, \quad F(f) = f(t_0).$

(a) Find all $p \in [1, +\infty]$ such that F is bounded. (b) Find ||F||.

2.3. Define a linear functional F on $(C[0,1], \|\cdot\|_{\infty})$ by

$$F(f) = 2f(0) - 3f(1) + \int_0^1 f(t) \, dt.$$

(a) Prove that F is bounded. (b) Find ||F||.

2.4 (the multiplication operator on C(I)). Let I = [a, b], and let $f \in C(I)$. For each $p \in [1, +\infty]$, define $M_f \colon C(I) \to C(I)$ by

$$M_f(g) = fg \qquad (g \in C(I)).$$

(a) Prove that M_f is bounded. (b) Find $||M_f||$. *Hint:* consider separately the cases $p = \infty$ and $p < \infty$.

2.5 (the multiplication operator on L^p). Let (X, μ) be a σ -finite measure space, and let $f: X \to \mathbb{K}$ be an essentially bounded measurable function. For each $p \in [1, +\infty]$, define $M_f: L^p(X, \mu) \to L^p(X, \mu)$ by

$$M_f(g) = fg \qquad (g \in L^p(X, \mu)).$$

(a) Prove that M_f is bounded. (b) Find $||M_f||$.

2.6. Let X be either $L^p[0,1]$ $(1 \le p < +\infty)$ or C[0,1]. Define $T: X \to X$ by

$$(Tf)(x) = \int_0^x f(t) dt \qquad (f \in X).$$

(a) Prove that T is bounded. Find ||T|| in the cases where (b) X = C[0, 1] and (c) $X = L^1[0, 1]$. Remark. If the above operator T acts on $L^2[0, 1]$, then $||T|| = 2/\pi$. We will be able to prove this in due course.

2.7 (the integral operator on C(I)). Let I = [a, b], and let $K \in C(I \times I)$. Define $T: C(I) \to C(I)$ by

$$(Tf)(x) = \int_a^b K(x, y) f(y) \, dy.$$

Prove that T takes C(I) to C(I), that T is bounded, and that $||T|| \leq ||K||_{\infty}(b-a)$.

2.8 (the Hilbert-Schmidt integral operator). Let (X, μ) be a σ -finite measure space, and let $K \in L^2(X \times X, \mu \times \mu)$. Define $T: L^2(X, \mu) \to L^2(X, \mu)$ by

$$(Tf)(x) = \int_X K(x, y)f(y) \, d\mu(y)$$

Prove that the above integral exists for almost all $x \in X$, that T takes $L^2(X, \mu)$ to $L^2(X, \mu)$, that T is bounded, and that $||T|| \leq ||K||_2$.

Banach spaces

2.9. Show that c_0 is a closed vector subspace of ℓ^{∞} . As a consequence, c_0 is a Banach space.

2.10. Show that $(c_{00}, \|\cdot\|_p)$ is not complete for each $p \in [1, +\infty]$, Show that $(\ell^p, \|\cdot\|_q)$ is not complete if q > p. Describe the completions of these spaces.

2.11. Show that the dimension of an infinite-dimensional Banach space is uncountable.

2.12. For each $p < \infty$, construct a Cauchy sequence in $(C[a, b], \|\cdot\|_p)$ which does not converge. Describe the completion of $(C[a, b], \|\cdot\|_p)$.

2.13. (a) Prove that $C^n[a, b]$ is a Banach space with respect to the norm $||f|| = \max_{0 \le k \le n} ||f^{(k)}||_{\infty}$. (b) Is $C^n[a, b]$ complete with respect to the sup-norm? Describe the completion of this space.

2.14. Let (X, μ) be a measure space. Prove that $L^{\infty}(X, \mu)$ is a Banach space.