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Convention. All vector spaces are over K = R or K = C.

Normed spaces

1.1. Let X be a normed space. Show that the operations X × X → X, (x, y) 7→ x + y, and
K×X → X, (λ, x) 7→ λx, are continuous.

1.2. Let X be a normed space. Show that the closure X0 of a vector subspace X0 ⊂ X is a vector
subspace as well.

1.3. Let p, q ∈ (1,+∞), and let 1
p
+ 1

q
= 1.

(a) Prove Young’s inequality

ab 6 ap

p
+

bq

q
(a, b > 0).

(b) Given x = (x1, . . . , xn) ∈ Kn, let ∥x∥p =
(∑n

i=1 |xi|p
)1/p

. Show that Young’s inequality implies
Hölder’s inequality

n∑
i=1

|xiyi| 6 ∥x∥p∥y∥q (x, y ∈ Kn).

(c) Show that Hölder’s inequality implies Minkowski’s inequality

∥x+ y∥p 6 ∥x∥p + ∥y∥p (x, y ∈ Kn).

Thus ∥ · ∥p is a norm on Kn. Let also ∥x∥1 =
∑n

i=1 |xi| and ∥x∥∞ = max16i6n |xi|. Clearly, ∥ · ∥1 and
∥ · ∥∞ are norms as well.

1.4. Draw the unit ball on the plane (R2, ∥ · ∥p) for various p ∈ [1,+∞]. Pay attention to the cases
p = 1, p = 2, p = ∞. What happens with the ball when p grows?

1.5. Let ∥ · ∥ and ∥ · ∥′ be norms on a vector space X, and let B and B′ denote the respective closed
unit balls. Prove that B ⊆ B′ iff ∥x∥′ 6 ∥x∥ for all x ∈ X (in this case, we write ∥ · ∥′ 6 ∥ · ∥).
1.6. Let 1 6 p 6 q 6 +∞.
(a) Prove that ∥ · ∥q 6 ∥ · ∥p on Kn.
(b) Show that there exists a constant C = Cn,p,q > 0 such that ∥ · ∥p 6 C∥ · ∥q on Kn.
(c) Can the above constant be chosen in such a way that it does not depend on n?
(d) Find the smallest possible Cn,p,q with the above property.

1.7. Let c00 denote the space of all finite sequences (i.e., sequences x = (xn), xn ∈ K, such that
xn = 0 for all but finitely many n). Are the norms ∥ · ∥p and ∥ · ∥q equivalent on c00 for p ̸= q?

1.8. Let X be a seminormed space, and let N = {x ∈ X : ∥x∥ = 0}. Show that the rule ∥x+N∥∧ =
∥x∥ determines a norm on X/N . In particular, show that ∥ ·∥∧ is well defined (i.e., that ∥x∥ depends
only on the class x+N ∈ X/N of x ∈ X).

Given a measure space (X,µ) and p ∈ [1,+∞), let L p(X,µ) denote the set of all measurable functions f : X → K
such that |f |p is µ-integrable. For each f ∈ L p(X,µ) we let

∥f∥p =
(∫

X

|f |pdµ
)1/p

.

1.9. Let (X,µ) be a measure space, and let p, q ∈ (1,+∞) satisfy 1
p
+ 1

q
= 1.

(a) Show that for each f ∈ L p(X,µ) and g ∈ L q(X,µ) the product fg is integrable, and that
Hölder’s inequality holds: ∫

X

|fg| dµ 6 ∥f∥p∥g∥q.
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(b) Using Hölder’s inequality, show that L p(X,µ) is a vector space, and that Minkowski’s inequality
holds:

∥f + g∥p 6 ∥f∥p + ∥g∥p (f, g ∈ L p(X,µ)).

Thus ∥ · ∥p is a seminorm on L p(X,µ). Clearly, this result holds for p = 1 as well.

The normed space associated with L p(X,µ) (see Exercise 1.8) is denoted by Lp(X,µ). Thus we have Lp(X,µ) =
L p(X,µ)/{f : f = 0 a.e.}. Observe that, if X = N and µ is the counting measure, then L p(X,µ) = Lp(X,µ), and
that Lp(X,µ) is nothing but

ℓp =
{
x = (xn) ∈ KN : ∥x∥p =

(∑
n

|xn|p
)1/p

< ∞
}
.

1.10. Let 1 6 p 6 q 6 +∞.
(a) Show that there exists a constant C = Ca,b,p,q > 0 such that ∥ · ∥p 6 C∥ · ∥q on C[a, b].
(b) Find the smallest possible Ca,b,p,q with the above property.
(c) Are the norms ∥ · ∥p and ∥ · ∥q equivalent on C[a, b] for p ̸= q?

Let (X,µ) be a measure space. A measurable function f : X → K is essentially bounded if there exists a measurable
set E ⊂ X such that µ(X \ E) = 0 and that f is bounded on E. The essential supremum of |f | is given by

ess sup |f | = inf
{
sup
x∈E

|f(x)| : E ⊂ X, µ(X \ E) = 0
}
. (1)

1.11. Show that inf in (1) is attained at some E. As a corollary, ess sup |f | = 0 iff f = 0 a.e.

1.12. Let f ∈ C[a, b]. Prove that ess sup |f | = supx∈[a,b] |f(x)|.

The set of all essentially bounded measurable functions on (X,µ) is denoted by L ∞(X,µ).

1.13. Show that L ∞(X,µ) is a vector space, and that the rule ∥f∥ = ess sup |f | determines a
seminorm on L ∞(X,µ).

The normed space associated with L ∞(X,µ) (see Exercise 1.8) is denoted by L∞(X,µ). Thus we have L∞(X,µ) =
L ∞(X,µ)/{f : f = 0 a.e.}. Observe that, if X = N and µ is the counting measure, then L ∞(X,µ) = L∞(X,µ), and
that L∞(X,µ) is nothing but the space ℓ∞ of all bounded sequences equipped with the supremum norm.

1.14. Let 1 6 p < q 6 ∞. Show that
(a) ℓp ⊂ ℓq, but ℓp ̸= ℓq;
(b) if µ(X) < ∞, then Lq(X,µ) ⊂ Lp(X,µ), and the inclusion is proper provided that X contains
infinitely many disjoint measurable sets of positive measure;
(c) Lp(R) ̸⊂ Lq(R) and Lq(R) ̸⊂ Lp(R).

1.15. Show that a normed space X is separable iff there exists a dense vector subspace X0 ⊂ X of
an at most countable dimension.

1.16. Show that c0, C[a, b], ℓp, Lp[a, b], Lp(R) (p < ∞) are separable, while ℓ∞, Cb(R), L∞[a, b],
L∞(R) are not separable.
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