Convention. All vector spaces are over $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$.

Normed spaces

1.1. Let X be a normed space. Show that the operations $X \times X \to X$, $(x, y) \mapsto x + y$, and $\mathbb{K} \times X \to X$, $(\lambda, x) \mapsto \lambda x$, are continuous.

1.2. Let X be a normed space. Show that the closure $\overline{X_0}$ of a vector subspace $X_0 \subset X$ is a vector subspace as well.

1.3. Let $p, q \in (1, +\infty)$, and let $\frac{1}{p} + \frac{1}{q} = 1$.

(a) Prove Young's inequality

$$ab \leqslant \frac{a^p}{p} + \frac{b^q}{q} \qquad (a,b \geqslant 0).$$

(b) Given $x = (x_1, \ldots, x_n) \in \mathbb{K}^n$, let $||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$. Show that Young's inequality implies Hölder's inequality

$$\sum_{i=1}^{n} |x_i y_i| \leq ||x||_p ||y||_q \qquad (x, y \in \mathbb{K}^n).$$

(c) Show that Hölder's inequality implies *Minkowski's inequality*

 $||x+y||_p \leq ||x||_p + ||y||_p \qquad (x, y \in \mathbb{K}^n).$

Thus $\|\cdot\|_p$ is a norm on \mathbb{K}^n . Let also $\|x\|_1 = \sum_{i=1}^n |x_i|$ and $\|x\|_{\infty} = \max_{1 \leq i \leq n} |x_i|$. Clearly, $\|\cdot\|_1$ and $\|\cdot\|_{\infty}$ are norms as well.

1.4. Draw the unit ball on the plane $(\mathbb{R}^2, \|\cdot\|_p)$ for various $p \in [1, +\infty]$. Pay attention to the cases $p = 1, p = 2, p = \infty$. What happens with the ball when p grows?

1.5. Let $\|\cdot\|$ and $\|\cdot\|'$ be norms on a vector space X, and let B and B' denote the respective closed unit balls. Prove that $B \subseteq B'$ iff $\|x\|' \leq \|x\|$ for all $x \in X$ (in this case, we write $\|\cdot\|' \leq \|\cdot\|$).

- **1.6.** Let $1 \leq p \leq q \leq +\infty$.
- (a) Prove that $\|\cdot\|_q \leq \|\cdot\|_p$ on \mathbb{K}^n .
- (b) Show that there exists a constant $C = C_{n,p,q} > 0$ such that $\|\cdot\|_p \leq C \|\cdot\|_q$ on \mathbb{K}^n .
- (c) Can the above constant be chosen in such a way that it does not depend on n?
- (d) Find the smallest possible $C_{n,p,q}$ with the above property.

1.7. Let c_{00} denote the space of all *finite* sequences (i.e., sequences $x = (x_n), x_n \in \mathbb{K}$, such that $x_n = 0$ for all but finitely many n). Are the norms $\|\cdot\|_p$ and $\|\cdot\|_q$ equivalent on c_{00} for $p \neq q$?

1.8. Let X be a seminormed space, and let $N = \{x \in X : ||x|| = 0\}$. Show that the rule $||x + N||^{\wedge} = ||x||$ determines a norm on X/N. In particular, show that $||\cdot||^{\wedge}$ is well defined (i.e., that ||x|| depends only on the class $x + N \in X/N$ of $x \in X$).

Given a measure space (X, μ) and $p \in [1, +\infty)$, let $\mathscr{L}^p(X, \mu)$ denote the set of all measurable functions $f: X \to \mathbb{K}$ such that $|f|^p$ is μ -integrable. For each $f \in \mathscr{L}^p(X, \mu)$ we let

$$||f||_p = \left(\int_X |f|^p d\mu\right)^{1/p}$$

1.9. Let (X, μ) be a measure space, and let $p, q \in (1, +\infty)$ satisfy $\frac{1}{p} + \frac{1}{q} = 1$.

(a) Show that for each $f \in \mathscr{L}^p(X,\mu)$ and $g \in \mathscr{L}^q(X,\mu)$ the product fg is integrable, and that *Hölder's inequality* holds:

$$\int_X |fg| \, d\mu \leqslant \|f\|_p \|g\|_q.$$

(b) Using Hölder's inequality, show that $\mathscr{L}^p(X,\mu)$ is a vector space, and that *Minkowski's inequality* holds:

$$\|f+g\|_p \leqslant \|f\|_p + \|g\|_p \qquad (f,g \in \mathscr{L}^p(X,\mu)).$$

Thus $\|\cdot\|_p$ is a seminorm on $\mathscr{L}^p(X,\mu)$. Clearly, this result holds for p=1 as well.

The normed space associated with $\mathscr{L}^p(X,\mu)$ (see Exercise 1.8) is denoted by $L^p(X,\mu)$. Thus we have $L^p(X,\mu) = \mathscr{L}^p(X,\mu)/\{f : f = 0 \text{ a.e.}\}$. Observe that, if $X = \mathbb{N}$ and μ is the counting measure, then $\mathscr{L}^p(X,\mu) = L^p(X,\mu)$, and that $L^p(X,\mu)$ is nothing but

$$\ell^{p} = \left\{ x = (x_{n}) \in \mathbb{K}^{\mathbb{N}} : \|x\|_{p} = \left(\sum_{n} |x_{n}|^{p}\right)^{1/p} < \infty \right\}.$$

1.10. Let $1 \leq p \leq q \leq +\infty$.

- (a) Show that there exists a constant $C = C_{a,b,p,q} > 0$ such that $\|\cdot\|_p \leq C \|\cdot\|_q$ on C[a,b].
- (b) Find the smallest possible $C_{a,b,p,q}$ with the above property.
- (c) Are the norms $\|\cdot\|_p$ and $\|\cdot\|_q$ equivalent on C[a, b] for $p \neq q$?

Let (X, μ) be a measure space. A measurable function $f: X \to \mathbb{K}$ is essentially bounded if there exists a measurable set $E \subset X$ such that $\mu(X \setminus E) = 0$ and that f is bounded on E. The essential supremum of |f| is given by

$$\operatorname{ess\,sup}|f| = \inf \big\{ \sup_{x \in E} |f(x)| : E \subset X, \ \mu(X \setminus E) = 0 \big\}.$$

$$\tag{1}$$

1.11. Show that inf in (1) is attained at some E. As a corollary, ess sup |f| = 0 iff f = 0 a.e.

1.12. Let $f \in C[a, b]$. Prove that $\operatorname{ess\,sup} |f| = \sup_{x \in [a, b]} |f(x)|$.

The set of all essentially bounded measurable functions on (X, μ) is denoted by $\mathscr{L}^{\infty}(X, \mu)$.

1.13. Show that $\mathscr{L}^{\infty}(X,\mu)$ is a vector space, and that the rule $||f|| = \operatorname{ess\,sup} |f|$ determines a seminorm on $\mathscr{L}^{\infty}(X,\mu)$.

The normed space associated with $\mathscr{L}^{\infty}(X,\mu)$ (see Exercise 1.8) is denoted by $L^{\infty}(X,\mu)$. Thus we have $L^{\infty}(X,\mu) = \mathscr{L}^{\infty}(X,\mu)/\{f: f=0 \text{ a.e.}\}$. Observe that, if $X = \mathbb{N}$ and μ is the counting measure, then $\mathscr{L}^{\infty}(X,\mu) = L^{\infty}(X,\mu)$, and that $L^{\infty}(X,\mu)$ is nothing but the space ℓ^{∞} of all bounded sequences equipped with the supremum norm.

- **1.14.** Let $1 \leq p < q \leq \infty$. Show that
- (a) $\ell^p \subset \ell^q$, but $\ell^p \neq \ell^q$;

(b) if $\mu(X) < \infty$, then $L^q(X, \mu) \subset L^p(X, \mu)$, and the inclusion is proper provided that X contains infinitely many disjoint measurable sets of positive measure; (c) $L^p(\mathbb{R}) \not\subset L^q(\mathbb{R})$ and $L^q(\mathbb{R}) \not\subset L^p(\mathbb{R})$.

1.15. Show that a normed space X is separable iff there exists a dense vector subspace $X_0 \subset X$ of an at most countable dimension.

1.16. Show that c_0 , C[a, b], ℓ^p , $L^p[a, b]$, $L^p(\mathbb{R})$ $(p < \infty)$ are separable, while ℓ^{∞} , $C_b(\mathbb{R})$, $L^{\infty}[a, b]$, $L^{\infty}(\mathbb{R})$ are not separable.