Compact quantum groups

(Exercises for Lectures 14-16)
6.1. Let A be a commutative unital C^{*}-bialgebra, and let $G=\operatorname{Max} A$. Define a semigroup structure on G, and show that the Gelfand transform $\Gamma_{A}: A \rightarrow C(G)$ is a C^{*}-bialgebra morphism.
6.2. Given a discrete group G, let λ_{G} denote the left regular representation of G on $\ell^{2}(G)$ given by $\left(\lambda_{G}(x) f\right)(y)=f\left(x^{-1} y\right)(x, y \in G)$.
(a) Show that λ_{G} is the restriction to G of the homomorphism $\ell^{1}(G) \rightarrow \mathscr{B}\left(\ell^{2}(G)\right)$ defined in Exercise 2.7.
(b) Let G and H be discrete groups. Show that there exists an isometric $*$-isomorphism

$$
C_{r}^{*}(G) \otimes_{*} C_{r}^{*}(H) \xrightarrow{\sim} C_{r}^{*}(G \times H), \quad \lambda_{G}(x) \otimes \lambda_{H}(y) \mapsto \lambda_{G \times H}(x, y) .
$$

(c) Show that there exists a unital $*$-homomorphism

$$
\Delta: C_{r}^{*}(G) \rightarrow C_{r}^{*}(G) \otimes_{*} C_{r}^{*}(G), \quad \lambda_{G}(x) \mapsto \lambda_{G}(x) \otimes \lambda_{G}(x)
$$

(d) Show that $\left(C_{r}^{*}(G), \Delta\right)$ is a compact quantum group.

Hint to (c): consider the operator W on $\ell^{2}(G \times G)$ given by $(W f)(x, y)=f\left(x, x^{-1} y\right)$, and calculate $W^{*} T W$, where $T \in \operatorname{span}\{\lambda(x) \otimes \lambda(x): x \in G\}$.
6.3. Let G be discrete group, and let $C^{*}(G)=C^{*}(\mathbb{C} G)$ be the (full) group C^{*}-algebra of G (see the lectures). Show that there exists a unital $*$-homomorphism

$$
\Delta: C^{*}(G) \rightarrow C^{*}(G) \otimes_{*} C^{*}(G), \quad U(x) \mapsto U(x) \otimes U(x)
$$

where $U(x)$ is the canonical image of $x \in G$ in $C^{*}(G)$. Prove that $\left(C^{*}(G), \Delta\right)$ is a compact quantum group.
6.4. Suppose that G is finitely generated. Show that $C^{*}(G)$ and $C_{r}^{*}(G)$ (see Exercises 6.2 and 6.3) are compact matrix quantum groups.
6.5. Let $q \in[-1,1], q \neq 0$. Recall (see the lectures) that

$$
C_{q}(\mathrm{SU}(2))=C^{*}\left(\alpha, \gamma \left\lvert\,\left(\begin{array}{cc}
a & -q \gamma^{*} \\
\gamma & \alpha^{*}
\end{array}\right)\right. \text { is unitary }\right) .
$$

(a) Write explicitly the defining relations between $\alpha, \gamma, \alpha^{*}, \gamma^{*}$.
(b) Let $u=\left(\begin{array}{cc}a & -q \gamma^{*} \\ \gamma & \alpha^{*}\end{array}\right) \in M_{2}\left(C_{q}(\mathrm{SU}(2))\right)$. Show that there exists a unique comultiplication $\Delta: C_{q}(\mathrm{SU}(2)) \rightarrow C_{q}(\mathrm{SU}(2)) \otimes_{*} C_{q}(\mathrm{SU}(2))$ such that $\left(C_{q}(\mathrm{SU}(2)), \Delta, u\right)$ is a compact matrix quantum group.

Definition 6.1. Let $q \in \mathbb{C} \backslash\{0\}$. The algebra of regular functions on the quantum $\operatorname{SL}(2)$ is the unital algebra $\mathscr{O}_{q}(\operatorname{SL}(2))$ generated by four elements a, b, c, d with relations

$$
\begin{gathered}
a b=q b a, \quad a c=q c a, \quad b d=q d b, \quad c d=q d c, \quad b c=c b, \\
a d-d a=\left(q-q^{-1}\right) b c, \quad a d-q b c=1 .
\end{gathered}
$$

6.6. Suppose that $q \in \mathbb{R} \backslash\{0\}$. Show that
(a) There exists an involution on $\mathscr{O}_{q}(\mathrm{SL}(2))$ uniquely determined by $a^{*}=d, b^{*}=-q c$ (cf. Exercise 6.6 (b)).
(b) If $|q| \leqslant 1$, then there exists a unital $*$-homomorphism $r: \mathscr{O}_{q}(\operatorname{SL}(2)) \rightarrow C_{q}(\mathrm{SU}(2))$ uniquely determined by $a \mapsto \alpha, c \mapsto \gamma$.
(c) $\left(C_{q}(\mathrm{SU}(2)), r\right)$ is the C^{*}-envelope of $\mathscr{O}_{q}(\mathrm{SL}(2))$ (cf. Exercise 5.5 (d)).
6.7. Let H be a Hilbert space with an orthonormal basis $\left\{e_{r, s}: r \in \mathbb{Z}_{\geqslant 0}, s \in \mathbb{Z}\right\}$, and let $q \in$ $[-1,1] \backslash\{0\}$.
(a) Show that there exists a $*$-representation π of $\mathscr{O}_{q}(\mathrm{SL}(2))$ on H uniquely determined by

$$
\pi(a) e_{r, s}=\sqrt{1-q^{2 r}} e_{r-1, s}, \quad \pi(c) e_{r, s}=q^{r} e_{r, s+1}
$$

(here we let $e_{r, s}=0$ for $r<0$).
(b) Given $i \in \mathbb{Z}$ and $j, k \in \mathbb{Z}_{\geqslant 0}$, let

$$
a_{i j k}= \begin{cases}\alpha^{i}\left(\gamma^{*}\right)^{j} \gamma^{k}, & i \geqslant 0, \\ \left(\alpha^{*}\right)^{-i}\left(\gamma^{*}\right)^{j} \gamma^{k}, & i<0\end{cases}
$$

Show that the set $\left\{a_{i j k}: i \in \mathbb{Z}, j, k \in \mathbb{Z}_{\geqslant 0}\right\}$ is linearly independent in $C_{q}(\operatorname{SU}(2))$.
(c) Deduce from (b) that the canonical map $\mathscr{O}_{q}(\mathrm{SL}(2)) \rightarrow C_{q}(\mathrm{SU}(2))$ (see Exercise 6.6 (b)) is injective.

Hint to (b). Extend π to a *-representation of $C_{q}(\mathrm{SU}(2))$ (see Exercise 6.6 (c)). Calculate explicitly $\pi\left(a_{i j k}\right) e_{r, 0}$. Then take a nontrivial linear combination x of the $a_{i j k}$'s, and look at the decay rate of the Fourier coefficients of $\pi(x) e_{r, 0}$ as $r \rightarrow \infty$.

Given a unital algebra A, define a linear map $\eta: \mathbb{C} \rightarrow A$ by $1_{\mathbb{C}} \rightarrow 1_{A}$, and let $\mu: A \otimes A \rightarrow A$ denote the multiplication in A.

Definition 6.2. A Hopf algebra is a bialgebra (A, Δ) equipped with an algebra homomorphism $\varepsilon: A \rightarrow \mathbb{C}$ (a counit) and a linear map $S: A \rightarrow A$ (an antipode) such that $\left(\varepsilon \otimes \mathbf{1}_{A}\right) \Delta=\left(\mathbf{1}_{A} \otimes \varepsilon\right) \Delta=\mathbf{1}_{A}$ and $\mu\left(S \otimes \mathbf{1}_{A}\right) \Delta=\mu\left(\mathbf{1}_{A} \otimes S\right) \Delta=\eta \varepsilon$.
6.8. (a) Show that $\mathscr{O}(\operatorname{SL}(2))$ becomes a Hopf algebra if we define ε and S by $\varepsilon(f)=f(e)$ and $(S f)(x)=f\left(x^{-1}\right)(f \in \mathscr{O}(\operatorname{SL}(2)), x \in \operatorname{SL}(2))$.
(b) Show that ε and S are uniquely determined by $\varepsilon(a)=\varepsilon(d)=1, \varepsilon(b)=\varepsilon(c)=0, S(a)=d$, $S(d)=a, S(b)=-b, S(c)=-c$ (for notation, see Exercise 5.5).
6.9. (a) Let $q \in \mathbb{C} \backslash\{0\}$. Show that $\mathscr{O}_{q}(\operatorname{SL}(2))$ is a Hopf algebra with ε and S uniquely determined by $\varepsilon(a)=\varepsilon(d)=1, \varepsilon(b)=\varepsilon(c)=0, S(a)=d, S(d)=a, S(b)=-q^{-1} b, S(c)=-q c$.
(b) Let $q \in[-1,1] \backslash\{0\}$. Identify $\mathscr{O}_{q}(\mathrm{SL}(2))$ with the dense $*$-subalgebra of $C_{q}(\mathrm{SU}(2))$ generated by α and γ (see Exercise 6.7 (c)). Show that the antipode S of $\mathscr{O}_{q}(\mathrm{SL}(2))$ is unbounded (and hence it has no reasonable extension to $C_{q}(\mathrm{SU}(2))$.
6.10. Let G be a discrete group. Show that the Haar state on $C_{r}^{*}(G)$ (see Exercise 6.2) is given by $h(a)=\left\langle a \delta_{e} \mid \delta_{e}\right\rangle$, where $\delta_{e} \in \ell^{2}(G)$ is 1 at $e, 0$ elsewhere.

