Compact quantum groups

(EXERCISES FOR LECTURES 14–16)

6.1. Let A be a commutative unital C^{*}-bialgebra, and let G = Max A. Define a semigroup structure on G, and show that the Gelfand transform $\Gamma_A : A \to C(G)$ is a C^{*}-bialgebra morphism.

6.2. Given a discrete group G, let λ_G denote the left regular representation of G on $\ell^2(G)$ given by $(\lambda_G(x)f)(y) = f(x^{-1}y) \ (x, y \in G).$

(a) Show that λ_G is the restriction to G of the homomorphism $\ell^1(G) \to \mathscr{B}(\ell^2(G))$ defined in Exercise 2.7.

(b) Let G and H be discrete groups. Show that there exists an isometric *-isomorphism

$$C_r^*(G) \otimes_* C_r^*(H) \xrightarrow{\sim} C_r^*(G \times H), \qquad \lambda_G(x) \otimes \lambda_H(y) \mapsto \lambda_{G \times H}(x, y).$$

(c) Show that there exists a unital *-homomorphism

$$\Delta \colon C_r^*(G) \to C_r^*(G) \otimes_* C_r^*(G), \qquad \lambda_G(x) \mapsto \lambda_G(x) \otimes \lambda_G(x).$$

(d) Show that $(C_r^*(G), \Delta)$ is a compact quantum group.

Hint to (c): consider the operator W on $\ell^2(G \times G)$ given by $(Wf)(x,y) = f(x,x^{-1}y)$, and calculate W^*TW , where $T \in \text{span}\{\lambda(x) \otimes \lambda(x) : x \in G\}$.

6.3. Let G be discrete group, and let $C^*(G) = C^*(\mathbb{C}G)$ be the (full) group C^* -algebra of G (see the lectures). Show that there exists a unital *-homomorphism

$$\Delta \colon C^*(G) \to C^*(G) \otimes_* C^*(G), \qquad U(x) \mapsto U(x) \otimes U(x),$$

where U(x) is the canonical image of $x \in G$ in $C^*(G)$. Prove that $(C^*(G), \Delta)$ is a compact quantum group.

6.4. Suppose that G is finitely generated. Show that $C^*(G)$ and $C^*_r(G)$ (see Exercises 6.2 and 6.3) are compact matrix quantum groups.

6.5. Let $q \in [-1, 1], q \neq 0$. Recall (see the lectures) that

$$C_q(\mathrm{SU}(2)) = C^*\left(\alpha, \gamma \left| \begin{pmatrix} a & -q\gamma^* \\ \gamma & \alpha^* \end{pmatrix} \right| \text{ is unitary} \right).$$

(a) Write explicitly the defining relations between $\alpha, \gamma, \alpha^*, \gamma^*$.

(b) Let $u = \begin{pmatrix} a & -q\gamma^* \\ \gamma & \alpha^* \end{pmatrix} \in M_2(C_q(\mathrm{SU}(2)))$. Show that there exists a unique comultiplication $\Delta : C_q(\mathrm{SU}(2)) \to C_q(\mathrm{SU}(2)) \otimes_* C_q(\mathrm{SU}(2))$ such that $(C_q(\mathrm{SU}(2)), \Delta, u)$ is a compact matrix quantum group.

Definition 6.1. Let $q \in \mathbb{C} \setminus \{0\}$. The algebra of *regular functions on the quantum* SL(2) is the unital algebra $\mathscr{O}_q(SL(2))$ generated by four elements a, b, c, d with relations

$$ab = qba$$
, $ac = qca$, $bd = qdb$, $cd = qdc$, $bc = cb$,
 $ad - da = (q - q^{-1})bc$, $ad - qbc = 1$.

6.6. Suppose that $q \in \mathbb{R} \setminus \{0\}$. Show that

(a) There exists an involution on $\mathscr{O}_q(\mathrm{SL}(2))$ uniquely determined by $a^* = d$, $b^* = -qc$ (cf. Exercise 6.6 (b)).

(b) If $|q| \leq 1$, then there exists a unital *-homomorphism $r: \mathscr{O}_q(\mathrm{SL}(2)) \to C_q(\mathrm{SU}(2))$ uniquely determined by $a \mapsto \alpha, c \mapsto \gamma$.

(c) $(C_q(SU(2)), r)$ is the C^{*}-envelope of $\mathscr{O}_q(SL(2))$ (cf. Exercise 5.5 (d)).

6.7. Let *H* be a Hilbert space with an orthonormal basis $\{e_{r,s} : r \in \mathbb{Z}_{\geq 0}, s \in \mathbb{Z}\}$, and let $q \in [-1,1] \setminus \{0\}$.

(a) Show that there exists a *-representation π of $\mathscr{O}_q(\mathrm{SL}(2))$ on H uniquely determined by

$$\pi(a)e_{r,s} = \sqrt{1 - q^{2r}} e_{r-1,s}, \quad \pi(c)e_{r,s} = q^r e_{r,s+1}$$

(here we let $e_{r,s} = 0$ for r < 0). (b) Given $i \in \mathbb{Z}$ and $j, k \in \mathbb{Z}_{\geq 0}$, let

$$a_{ijk} = \begin{cases} \alpha^i (\gamma^*)^j \gamma^k, & i \ge 0, \\ (\alpha^*)^{-i} (\gamma^*)^j \gamma^k, & i < 0. \end{cases}$$

Show that the set $\{a_{ijk} : i \in \mathbb{Z}, j, k \in \mathbb{Z}_{\geq 0}\}$ is linearly independent in $C_q(SU(2))$. (c) Deduce from (b) that the canonical map $\mathscr{O}_q(SL(2)) \to C_q(SU(2))$ (see Exercise 6.6 (b)) is

injective. $H_{i} \leftarrow (L) = D_{i}$ that the calculate map $\mathcal{O}_{q}(\mathrm{SL}(2)) \to \mathcal{O}_{q}(\mathrm{SU}(2))$ (see Excreme 0.0 (b)) is

Hint to (b). Extend π to a *-representation of $C_q(SU(2))$ (see Exercise 6.6 (c)). Calculate explicitly $\pi(a_{ijk})e_{r,0}$. Then take a nontrivial linear combination x of the a_{ijk} 's, and look at the decay rate of the Fourier coefficients of $\pi(x)e_{r,0}$ as $r \to \infty$.

Given a unital algebra A, define a linear map $\eta \colon \mathbb{C} \to A$ by $1_{\mathbb{C}} \to 1_A$, and let $\mu \colon A \otimes A \to A$ denote the multiplication in A.

Definition 6.2. A Hopf algebra is a bialgebra (A, Δ) equipped with an algebra homomorphism $\varepsilon \colon A \to \mathbb{C}$ (a counit) and a linear map $S \colon A \to A$ (an antipode) such that $(\varepsilon \otimes \mathbf{1}_A)\Delta = (\mathbf{1}_A \otimes \varepsilon)\Delta = \mathbf{1}_A$ and $\mu(S \otimes \mathbf{1}_A)\Delta = \mu(\mathbf{1}_A \otimes S)\Delta = \eta\varepsilon$.

6.8. (a) Show that $\mathscr{O}(\mathrm{SL}(2))$ becomes a Hopf algebra if we define ε and S by $\varepsilon(f) = f(e)$ and $(Sf)(x) = f(x^{-1})$ ($f \in \mathscr{O}(\mathrm{SL}(2)), x \in \mathrm{SL}(2)$). (b) Show that ε and S are uniquely determined by $\varepsilon(a) = \varepsilon(d) = 1$, $\varepsilon(b) = \varepsilon(c) = 0$, S(a) = d,

(b) Show that ε and S are uniquely determined by $\varepsilon(a) = \varepsilon(d) = 1$, $\varepsilon(b) = \varepsilon(c) = 0$, S(a) = a, S(d) = a, S(b) = -b, S(c) = -c (for notation, see Exercise 5.5).

6.9. (a) Let $q \in \mathbb{C} \setminus \{0\}$. Show that $\mathscr{O}_q(\mathrm{SL}(2))$ is a Hopf algebra with ε and S uniquely determined by $\varepsilon(a) = \varepsilon(d) = 1$, $\varepsilon(b) = \varepsilon(c) = 0$, S(a) = d, S(d) = a, $S(b) = -q^{-1}b$, S(c) = -qc. (b) Let $q \in [-1,1] \setminus \{0\}$. Identify $\mathscr{O}_q(\mathrm{SL}(2))$ with the dense *-subalgebra of $C_q(\mathrm{SU}(2))$ generated by α and γ (see Exercise 6.7 (c)). Show that the antipode S of $\mathscr{O}_q(\mathrm{SL}(2))$ is unbounded (and hence it has no reasonable extension to $C_q(\mathrm{SU}(2))$.

6.10. Let G be a discrete group. Show that the Haar state on $C_r^*(G)$ (see Exercise 6.2) is given by $h(a) = \langle a\delta_e | \delta_e \rangle$, where $\delta_e \in \ell^2(G)$ is 1 at e, 0 elsewhere.