
15.05.2021 C∗-algebras & compact quantum groups Exercise sheet 6

Compact quantum groups
(exercises for Lectures 14–16)

6.1. Let A be a commutative unital C∗-bialgebra, and let G = MaxA. Define a semigroup structure
on G, and show that the Gelfand transform ΓA : A → C(G) is a C∗-bialgebra morphism.

6.2. Given a discrete group G, let λG denote the left regular representation of G on ℓ2(G) given by
(λG(x)f)(y) = f(x−1y) (x, y ∈ G).
(a) Show that λG is the restriction to G of the homomorphism ℓ1(G) → B(ℓ2(G)) defined in Exercise
2.7.
(b) Let G and H be discrete groups. Show that there exists an isometric ∗-isomorphism

C∗
r (G)⊗∗C

∗
r (H) ∼−→ C∗

r (G×H), λG(x)⊗ λH(y) 7→ λG×H(x, y).

(c) Show that there exists a unital ∗-homomorphism

∆: C∗
r (G) → C∗

r (G)⊗∗C
∗
r (G), λG(x) 7→ λG(x)⊗ λG(x).

(d) Show that (C∗
r (G),∆) is a compact quantum group.

Hint to (c): consider the operator W on ℓ2(G × G) given by (Wf)(x, y) = f(x, x−1y), and
calculate W ∗TW , where T ∈ span{λ(x)⊗ λ(x) : x ∈ G}.

6.3. Let G be discrete group, and let C∗(G) = C∗(CG) be the (full) group C∗-algebra of G (see the
lectures). Show that there exists a unital ∗-homomorphism

∆: C∗(G) → C∗(G)⊗∗C
∗(G), U(x) 7→ U(x)⊗ U(x),

where U(x) is the canonical image of x ∈ G in C∗(G). Prove that (C∗(G),∆) is a compact quantum
group.

6.4. Suppose that G is finitely generated. Show that C∗(G) and C∗
r (G) (see Exercises 6.2 and 6.3)

are compact matrix quantum groups.

6.5. Let q ∈ [−1, 1], q ̸= 0. Recall (see the lectures) that

Cq(SU(2)) = C∗
(
α, γ

∣∣∣ ( a −qγ∗

γ α∗

)
is unitary

)
.

(a) Write explicitly the defining relations between α, γ, α∗, γ∗.

(b) Let u =
(

a −qγ∗

γ α∗

)
∈ M2(Cq(SU(2))). Show that there exists a unique comultiplication

∆: Cq(SU(2)) → Cq(SU(2))⊗∗ Cq(SU(2)) such that (Cq(SU(2)),∆, u) is a compact matrix quan-
tum group.

Definition 6.1. Let q ∈ C\{0}. The algebra of regular functions on the quantum SL(2) is the unital algebra Oq(SL(2))
generated by four elements a, b, c, d with relations

ab = qba, ac = qca, bd = qdb, cd = qdc, bc = cb,

ad− da = (q − q−1)bc, ad− qbc = 1.
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6.6. Suppose that q ∈ R \ {0}. Show that
(a) There exists an involution on Oq(SL(2)) uniquely determined by a∗ = d, b∗ = −qc (cf. Exercise
6.6 (b)).
(b) If |q| 6 1, then there exists a unital ∗-homomorphism r : Oq(SL(2)) → Cq(SU(2)) uniquely
determined by a 7→ α, c 7→ γ.
(c) (Cq(SU(2)), r) is the C∗-envelope of Oq(SL(2)) (cf. Exercise 5.5 (d)).

6.7. Let H be a Hilbert space with an orthonormal basis {er,s : r ∈ Z>0, s ∈ Z}, and let q ∈
[−1, 1] \ {0}.
(a) Show that there exists a ∗-representation π of Oq(SL(2)) on H uniquely determined by

π(a)er,s =
√

1− q2r er−1,s, π(c)er,s = qrer,s+1

(here we let er,s = 0 for r < 0).
(b) Given i ∈ Z and j, k ∈ Z>0, let

aijk =

{
αi(γ∗)jγk, i > 0,

(α∗)−i(γ∗)jγk, i < 0.

Show that the set {aijk : i ∈ Z, j, k ∈ Z>0} is linearly independent in Cq(SU(2)).
(c) Deduce from (b) that the canonical map Oq(SL(2)) → Cq(SU(2)) (see Exercise 6.6 (b)) is
injective.

Hint to (b). Extend π to a ∗-representation of Cq(SU(2)) (see Exercise 6.6 (c)). Calculate
explicitly π(aijk)er,0. Then take a nontrivial linear combination x of the aijk’s, and look at the decay
rate of the Fourier coefficients of π(x)er,0 as r → ∞.

Given a unital algebra A, define a linear map η : C → A by 1C → 1A, and let µ : A⊗A → A denote the
multiplication in A.

Definition 6.2. A Hopf algebra is a bialgebra (A,∆) equipped with an algebra homomorphism ε : A → C (a counit)
and a linear map S : A → A (an antipode) such that (ε⊗1A)∆ = (1A⊗ε)∆ = 1A and µ(S⊗1A)∆ = µ(1A⊗S)∆ = ηε.

6.8. (a) Show that O(SL(2)) becomes a Hopf algebra if we define ε and S by ε(f) = f(e) and
(Sf)(x) = f(x−1) (f ∈ O(SL(2)), x ∈ SL(2)).
(b) Show that ε and S are uniquely determined by ε(a) = ε(d) = 1, ε(b) = ε(c) = 0, S(a) = d,
S(d) = a, S(b) = −b, S(c) = −c (for notation, see Exercise 5.5).

6.9. (a) Let q ∈ C \ {0}. Show that Oq(SL(2)) is a Hopf algebra with ε and S uniquely determined
by ε(a) = ε(d) = 1, ε(b) = ε(c) = 0, S(a) = d, S(d) = a, S(b) = −q−1b, S(c) = −qc.
(b) Let q ∈ [−1, 1] \ {0}. Identify Oq(SL(2)) with the dense ∗-subalgebra of Cq(SU(2)) generated
by α and γ (see Exercise 6.7 (c)). Show that the antipode S of Oq(SL(2)) is unbounded (and hence
it has no reasonable extension to Cq(SU(2)).

6.10. Let G be a discrete group. Show that the Haar state on C∗
r (G) (see Exercise 6.2) is given by

h(a) = ⟨aδe | δe⟩, where δe ∈ ℓ2(G) is 1 at e, 0 elsewhere.
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