C^* -envelopes

(EXERCISES FOR LECTURES 13–14)

5.1. Let $A = \mathbb{C}[t^{\pm 1}]$ be the Laurent polynomial algebra with involution $t^* = t^{-1}$. Prove that $C^*(A) \cong C^*(u \mid u \text{ is unitary}) \cong C(\mathbb{T})$.

5.2. Let $A = \mathbb{C}[t_1^{\pm 1}, \ldots, t_n^{\pm 1}]$ be the Laurent polynomial algebra with involution $t_i^* = t_i^{-1}$ $(i = 1, \ldots, n)$. Prove that $C^*(A) \cong C^*_{\text{com}}(u_1, \ldots, u_n | u_i \text{ are unitaries}) \cong C(\mathbb{T}^n)$.

5.3. Let $A = \mathbb{C}[t^{\pm 1}]$ be the Laurent polynomial algebra with involution $t^* = t$. Prove that $C^*(A)$ does not exist.

5.4. Let A be the universal unital *-algebra generated by selfadjoint elements p, q with relation [p, q] = i1 (the Weyl algebra). Show that $C^*(A) = 0$.

5.5. Let $SL(2) = SL(2, \mathbb{C})$, and define $\sigma \in Aut(SL(2))$ by $\sigma(g) = (\overline{g^{\top}})^{-1}$. Define $a, b, c, d \in \mathscr{O}(SL(2))$ by $a(g) = g_{11}, b(g) = g_{12}, c(g) = g_{21}, d(g) = g_{22}$. Show that (a) The rule $f^*(g) = \overline{f(\sigma(g))}$ defines an involution on the algebra $\mathscr{O}(SL(2))$ of regular functions on SL(2).

(b) The involution on $\mathscr{O}(\mathrm{SL}(2))$ is uniquely determined by $a^* = d$, $b^* = -c$.

(c) There exits bijections $SL(2) \cong Hom_{Alg}(\mathscr{O}(SL(2)), \mathbb{C})$ and $SU(2) \cong Hom_{*-Alg}(\mathscr{O}(SL(2)), \mathbb{C})$ (where Alg and *-Alg denote the category of unital algebras and of unital *-algebras, respectively). (d) C(SU(2)) is the C*-envelope of $\mathscr{O}(SL(2))$.

5.6 (the rotation algebra or the quantum 2-torus). Given $\theta \in \mathbb{R}$, let \mathscr{A}_{θ} denote the universal unital *-algebra generated by unitaries u, v with relation $uv = e^{2\pi i \theta} vu$. Let also $A_{\theta} = C^*(\mathscr{A}_{\theta})$.

(a) Show that \mathscr{A}_0 is *-isomorphic to the Laurent polynomial algebra $\mathbb{C}[u^{\pm 1}, v^{\pm 1}]$, and that A_0 is isometrically *-isomorphic to $C(\mathbb{T}^2)$.

(b) Show that for each $z = (\lambda, \mu) \in \mathbb{T}^2$ there exists a *-automorphism α_z of A_θ uniquely determined by $u \mapsto \lambda u, v \mapsto \mu v$. Prove that the resulting group homomorphism $\alpha \colon \mathbb{T}^2 \to \operatorname{Aut}(A_\theta)$ is continuous with respect to the strong operator topology on $\operatorname{Aut}(A_\theta)$.

(c) Define $E: A_{\theta} \to A_{\theta}$ by $E(a) = \int_{\mathbb{T}^2} \alpha_z(a) d\nu(z)$ (where ν is the normalized Haar measure on \mathbb{T}^2). Show that Im $E = \mathbb{C}1$, that E(1) = 1, and that $E(u^k v^\ell) = 0$ unless $k = \ell = 0$.

(d) Show that the monomials $u^k v^\ell$ $(k, \ell \in \mathbb{Z})$ are linearly independent in A_{θ} . Deduce that the canonical map $\mathscr{A}_{\theta} \to A_{\theta}$ is injective.

(e) Show that if E(a) = 0 for some positive $a \in A_{\theta}$, then a = 0. (*Hint:* if $a \neq 0$, then take a state f on A such that $f(a) \neq 0$).

(f) Show that, if $\theta \notin \mathbb{Q}$, then α_z is inner whenever z belongs to a dense subset of \mathbb{T}^2 .

(g) Show that, if $\theta \notin \mathbb{Q}$, then A_{θ} is simple (i.e., A_{θ} has no proper closed two-sided ideals other than 0).

(h) Show that, if $\theta \notin \mathbb{Q}$, then A_{θ} is isomorphic to the C^* -subalgebra of $\mathscr{B}(L^2(\mathbb{T}))$ generated by two operators U, V given by (Uf)(z) = zf(z) and $(Vf)(z) = f(e^{-2\pi i\theta}z)$ $(f \in L^2(\mathbb{T}), z \in \mathbb{T})$. (i) Does (h) hold if $\theta \in \mathbb{Q}$?

1

Recall that a bounded linear operator V on a Hilbert space is an isometry (that is, ||Vx|| = ||x|| for all $x \in H$, or, equivalently, $\langle Vx | Vy \rangle = \langle x | y \rangle$ for all $x, y \in H$) iff $V^*V = \mathbf{1}$. If A is a unital *-algebra, then we say that $v \in A$ is an *isometry* if $v^*v = 1$.

Theorem 5.1 (Wold, von Neumann). Let V be an isometry on a Hilbert space. Then V is unitarily equivalent to $\bigoplus_{i \in I} V_i$, where each V_i is either a unitary operator on a Hilbert space H_i or the right shift on $H_i = \ell^2$.

Note that a Hilbert direct sum of unitary operators is unitary. So we may assume that at most one operator in the family $\{V_i\}$ is unitary.

5.7 (*Coburn's theorem*). Let $A = C^*(u | u^*u = 1)$ be the universal C^* -algebra generated by an isometry. Prove that A is isomorphic to the Toeplitz algebra (see Exercise 3.6).

Hint: use the Wold–von Neumann theorem.