Tensor products

(EXERCISES FOR LECTURES 10-13)
4.1. Let H_{1} and H_{2} be infinite-dimensional inner product spaces. Prove that the algebraic tensor product $H_{1} \otimes H_{2}$ is not complete w.r.t. the canonical inner product.
4.2. Let I be a set, and let H be a Hilbert space. Prove that there exists a unitary isomorphism $\ell^{2}(I) \dot{\otimes} H \rightarrow \ell^{2}(I, H)=\bigoplus_{i \in I} H$ uniquely determined by $\left(c_{i}\right) \otimes h \mapsto\left(c_{i} h\right)$.
4.3. Let (X, μ) and (Y, ν) be σ-finite measure spaces. Prove that there exists a unitary isomorphism $L^{2}(X, \mu) \dot{\otimes} L^{2}(Y, \nu) \rightarrow L^{2}(X \times Y, \mu \times \nu)$ uniquely determined by $f \otimes g \mapsto((x, y) \mapsto f(x) g(y))$.
4.4. Let A, B, C be C^{*}-algebras.
(a) Construct isometric $*$-isomorphisms $A \otimes_{*} B \cong B \otimes_{*} A$ and $A \otimes_{*}\left(B \otimes_{*} C\right) \cong\left(A \otimes_{*} B\right) \otimes_{*} C$.
(b) Do the same for $\otimes_{\max }$.
4.5. Let H_{1} and H_{2} be infinite-dimensional Hilbert spaces. Is the canonical embedding $\mathscr{B}\left(H_{1}\right) \otimes_{*} \mathscr{B}\left(H_{2}\right) \hookrightarrow \mathscr{B}\left(H_{1} \dot{\otimes} H_{2}\right)$ surjective?
4.6. Let H be an infinite-dimensional separable Hilbert space, and let $\left(e_{i}\right)$ be an orthonormal basis of H. Show that there exists a unique bounded linear map $\theta: \mathscr{K}(H) \rightarrow \mathscr{K}(H)$ (the transpose map) such that $\left\langle\theta(T) e_{j} \mid e_{i}\right\rangle=\left\langle T e_{i} \mid e_{j}\right\rangle$ for all i, j and all $T \in \mathscr{K}(H)$. Prove that $\mathbf{1} \otimes \theta: \mathscr{K}(H) \otimes \mathscr{K}(H) \rightarrow$ $\mathscr{K}(H) \otimes \mathscr{K}(H)$ is unbounded with respect to the spatial C^{*}-norm on $\mathscr{K}(H) \otimes \mathscr{K}(H)$.
4.7. Let H be an infinite-dimensional Hilbert space. Is the multiplication map $\mathscr{K}(H) \otimes \mathscr{K}(H) \rightarrow$ $\mathscr{K}(H)$ bounded with respect to the spatial C^{*}-norm on $\mathscr{K}(H) \otimes \mathscr{K}(H)$?
4.8. Let X be a locally compact Hausdorff topological space, and let E be a Banach space. Prove that the map $C_{0}(X) \otimes E \rightarrow C_{0}(X, E), f \otimes v \mapsto(x \mapsto f(x) v)$, has dense image.

Hint: partitions of unity.
4.9. Let X and Y be locally compact Hausdorff topological spaces. Construct an isometric *isomorphism $C_{0}\left(X, C_{0}(Y)\right) \cong C_{0}(X \times Y)$.
4.10. Let A and B be $*$-algebras. A linear map $\varphi: A \rightarrow B$ is positive if $\varphi\left(A_{\mathrm{pos}}\right) \subset B_{\text {pos }}$. Show that each positive linear map between C^{*}-algebras is continuous.
4.11. Let A, B be C^{*}-algebras, and let π be a nondegenerate $*$-representation of the algebraic tensor product $A \otimes B$ on a Hilbert space H. Show that there exists a unique pair (π_{A}, π_{B}) of nondegenerate $*$-representations of A and B on H such that for all $a \in A, b \in B$ we have $\left[\pi_{A}(a), \pi_{B}(b)\right]=0$ and $\pi(a \otimes b)=\pi_{A}(a) \pi_{B}(b)$.

Hint: define $\pi_{A}(a)=$ SOT- $\lim \pi\left(a \otimes e_{\lambda}\right)$, where $\left(e_{\lambda}\right)$ is an approximate identity in B. To show that the limit exists, use Exercise 4.10 to show that the map $b \mapsto \pi(a \otimes b)$ is bounded, and deduce that the net $\pi\left(a \otimes e_{\lambda}\right)$ is bounded.
4.12. Let A, B, C be C^{*}-algebras, and let $\pi: A \otimes B \rightarrow C$ be a $*$-homomorphism. Do there always exist $*$-homomorphisms $\varphi: A \rightarrow C$ and $\psi: B \rightarrow C$ such that for all $a \in A, b \in B$ we have $\pi(a \otimes b)=$ $\varphi(a) \psi(b)$? (For $C=\mathscr{B}(H)$, the answer is yes by the previous exercise.)

