C^{*}-algebras. Functional calculus. Positivity

(Exercises for Lectures 4-6)
2.1. Show that $C^{n}[0,1]$ is a Banach $*$-algebra under the involution $f^{*}(t)=\overline{f(t)}(t \in[0,1])$, but is not a C^{*}-algebra unless $n=0$.
2.2. Show that $\mathscr{A}(\overline{\mathbb{D}})$ is a Banach $*$-algebra under the involution $f^{*}(z)=\overline{f(\bar{z})}(z \in \overline{\mathbb{D}})$, but is not a C^{*}-algebra.
2.3. Let G be a discrete group. Show that $\ell^{1}(G)$ is a Banach $*$-algebra under the involution $f^{*}(x)=$ $\overline{f\left(x^{-1}\right)}(x \in G)$, but is not a C^{*}-algebra unless $G=\{e\}$.
2.4. (a) Does there exist a norm and an involution on $C^{1}[a, b]$ making it into a C^{*}-algebra?
(b) Does there exist a norm and an involution on $\mathscr{A}(\overline{\mathbb{D}})$ making it into a C^{*}-algebra?
(c) Does there exist a norm and an involution on $\ell^{1}(\mathbb{Z})$ making it into a C^{*}-algebra?

Remark. In 2.4 (a,b,c), we do not assume that the new norm is equivalent to the original norm.
2.5. Let X be a locally compact Hausdorff topological space, and let X_{+}denote the one-point compactification of X. For each $f \in C_{0}(X)$, define $f_{+}: X_{+} \rightarrow \mathbb{C}$ by $f_{+}(x)=f(x)$ for $x \in X$ and $f_{+}(\infty)=0$. Prove that f_{+}is continuous, and that the map $C_{0}(X)_{+} \rightarrow C\left(X_{+}\right), f+\lambda 1_{+} \mapsto f_{+}+\lambda$, is an isometric $*$-isomorphism. (Here we assume that $C_{0}(X)_{+}$is equipped with the canonical C^{*}-norm extending the supremum norm on $C_{0}(X)$.)
2.6. Let A and B be C^{*}-algebras. Show that if B is commutative, then each homomorphism from A to B is a $*$-homomorphism. Does the above result hold without the commutativity assumption?
2.7. Let G be a discrete group. The left regular representation $\lambda: \ell^{1}(G) \rightarrow \mathscr{B}\left(\ell^{2}(G)\right)$ is given by $\lambda(f) g=f * g\left(f \in \ell^{1}(G), g \in \ell^{2}(G)\right)$. Prove that λ is well defined (that is, $f * g$ is defined everywhere on G and belongs to $\ell^{2}(G)$, that $\lambda(f)$ is a bounded linear operator, and that λ is a $*$-homomorphism). Prove that λ is faithful.

Definition 2.1. The reduced group C^{*}-algebra of G is the C^{*}-subalgebra $C_{r}^{*}(G)=\overline{\operatorname{Im} \lambda} \subset \mathscr{B}\left(\ell^{2}(G)\right)$.
2.8. Let G be a discrete abelian group. Construct an isometric *-isomorphism $C_{r}^{*}(G) \cong C(\widehat{G})$.
2.9. Let $A=C^{1}[0,1]$. Is it true that (a) for each unitary $u \in A$ we have $\sigma(u) \subset \mathbb{T}$? (b) for each selfadjoint $a \in A$ we have $\sigma(a) \subset \mathbb{R}$? (c) for each $a \in A$ we have $\|a\|=r(a)$?
2.10. Let $A=\mathscr{A}(\overline{\mathbb{D}})$. Is it true that (a) for each unitary $u \in A$ we have $\sigma(u) \subset \mathbb{T}$? (b) for each selfadjoint $a \in A$ we have $\sigma(a) \subset \mathbb{R}$? (c) for each $a \in A$ we have $\|a\|=r(a)$?
2.11. Let $A=\ell^{1}(\mathbb{Z})$. Is it true that (a) for each unitary $u \in A$ we have $\sigma(u) \subset \mathbb{T}$? (b) for each selfadjoint $a \in A$ we have $\sigma(a) \subset \mathbb{R}$? (c) for each $a \in A$ we have $\|a\|=r(a)$?
2.12. Let A be a unital C^{*}-algebra, and let $u \in A$ be a unitary element.
(a) Prove that if $\sigma(u) \neq \mathbb{T}$, then there exists a selfadjoint element $a \in A$ such that $u=\exp (i a)$.
(b) Does (a) hold if $\sigma(u)=\mathbb{T}$?
2.13. Let $\varphi: A \rightarrow B$ be a surjective $*$-homomorphism of C^{*}-algebras. Is it true that
(a) for each selfadjoint $b \in B$ there exists a selfadjoint $a \in A$ with $\varphi(a)=b$?
(b) for each unitary $b \in B$ there exists a unitary $a \in A$ with $\varphi(a)=b$?
2.14. Construct a unital Banach *-algebra and a normal element $a \in A$ which does not have a continuous functional calculus (i.e., there is no continuous unital *-homomorphism $\gamma: C(\sigma(a)) \rightarrow A$ satisfying $\gamma(t)=a$, where t is the tautological embedding of $\sigma(a)$ into $\mathbb{C})$.
2.15. Let X be a compact Hausdorff topological space. Show that for each $a \in C(X)$ and each $f \in C(\sigma(a))$ we have $f(a)=f \circ a$.
2.16. Let $\alpha \in \ell^{\infty}$, and let M_{α} denote the respective diagonal operator on ℓ^{2}. Show that for each $f \in C\left(\sigma\left(M_{\alpha}\right)\right)$ we have $f\left(M_{\alpha}\right)=M_{f \circ \alpha}$.
2.17. Let (X, μ) be a σ-finite measure space, let $\varphi: X \rightarrow \mathbb{C}$ be an essentially bounded measurable function, and let M_{φ} denote the respective multiplication operator on $L^{2}(X, \mu)$. Show that for each $f \in C\left(\sigma\left(M_{\varphi}\right)\right)$ we have $f\left(M_{\varphi}\right)=M_{f \circ \varphi}$ (in particular, give a precise meaning to the expression $f \circ \varphi$).
2.18. Let A and B be unital C^{*}-algebras, and let $\varphi: A \rightarrow B$ be a unital $*$-homomorphism. Show that for each normal $a \in A$ and each $f \in C(\sigma(a))$ we have $\varphi(f(a))=f(\varphi(a))$.
2.19. Show that each element of a unital C^{*}-algebra is a linear combination of four unitaries.

Hint:

2.20. Let A be a C^{*}-algebra, and let $u \in A$.
(a) Show that $u^{*} u$ is a projection iff $u u^{*} u=u$. An element with the above property is called a partial isometry.
(b) Let H be a Hilbert space. Show that $u \in \mathscr{B}(H)$ is a partial isometry iff the restriction of u to $(\operatorname{Ker} u)^{\perp}$ is an isometry.
2.21 (polar decomposition). Let H be a Hilbert space. Prove that for each $a \in \mathscr{B}(H)$ there exists a unique partial isometry $u \in \mathscr{B}(H)$ such that $a=u|a|$ and $\operatorname{Ker} u=(\operatorname{Im}|a|)^{\perp}$.
2.22 (polar decomposition for invertibles). Let A be a unital C^{*}-algebra.
(a) Show that for each invertible $a \in A$ there exists a unique unitary $u \in A$ such that $a=u|a|$.
(b) Does (a) hold if a is not invertible and $A=C[a, b]$?
(c) Does (a) hold if a is not invertible and $A=\mathscr{B}(H)$?
2.23. Let A be a C^{*}-algebra, and let $a, b \in A, 0 \leqslant a \leqslant b$.
(a) Prove that $a^{1 / 2} \leqslant b^{1 / 2}$.
(b) Give an example showing that, in general, $a^{2} \nless b^{2}$.

