Commutative Banach algebras

(EXERCISES FOR LECTURES 1-3)

1.1. Let $\mathscr{P}(\mathbb{T})$ denote the closure of $\mathbb{C}[z]$ in $C(\mathbb{T})$, where z is the coordinate on \mathbb{C} . Recall that the disk algebra $\mathscr{A}(\bar{\mathbb{D}})$ consists of those $f \in C(\bar{\mathbb{D}})$ that are holomorphic on the disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. Show that each $f \in \mathscr{P}(\mathbb{T})$ uniquely extends to $\tilde{f} \in \mathscr{A}(\bar{\mathbb{D}})$, and that $\sigma_{\mathscr{P}(\mathbb{T})}(f) = \tilde{f}(\bar{\mathbb{D}})$.

1.2. A commutative unital algebra A is *local* if A has a unique maximal ideal. Construct a local Banach algebra without zero divisors.

Hint. Consider the subalgebra of $\mathbb{C}[[z]]$ that consists of formal series $a = \sum c_n z^n$ satisfying $||a|| = \sum |c_n|w_n < \infty$. Here (w_n) is a sequence of positive numbers satisfying some special conditions.

1.3. Prove that for each unital algebra A and each $a \in A$ we have $\sigma_{A_+}(a) = \sigma(a) \cup \{0\}$.

1.4. (a) Let A be a Banach algebra, $a, b \in A$, ab = ba. Prove that $r(a + b) \leq r(a) + r(b)$ and $r(ab) \leq r(a)r(b)$ (where r is the spectral radius). (b) Does (a) hold if we drop the assumption that ab = ba?

1.5. Let $c_{00} \subset c_0$ denote the ideal of finite sequences (i.e., of those sequences $a = (a_n)$ such that $a_n = 0$ for all but finitely many $n \in \mathbb{N}$). Prove that c_{00} is not contained in a maximal ideal of c_0 .

1.6. Let $A = \{f \in C[0,1] : f(0) = 0\}$, and let $I = \{f \in A : f \text{ vanishes on a neighborhood of } 0\}$. Prove that I is not contained in a maximal ideal of A.

1.7. Let X be a compact Hausdorff topological space. For each closed subset $Y \subset X$ let $I_Y = \{f \in C(X) : f|_Y = 0\}$. Prove that the assignment $Y \mapsto I_Y$ is a 1-1 correspondence between the collection of all closed subsets of X and the collection of all closed ideals of C(X).

1.8. A commutative algebra A is *semisimple* if the intersection of all maximal modular ideals of A (the *Jacobson radical* of A) is $\{0\}$. Show that every homomorphism from a Banach algebra to a commutative semisimple Banach algebra is continuous.

1.9. Describe the maximal spectrum and the Gelfand transform for the algebras (a) $C^n[0,1]$; (b) $\mathscr{A}(\bar{\mathbb{D}})$; (c) $\mathscr{P}(\mathbb{T})$.

1.10. Let $A(\mathbb{T}) = \{f \in C(\mathbb{T}) : \sum_{n \in \mathbb{Z}} |\hat{f}(n)| < \infty\}$, where $\hat{f}(n)$ is the *n*th Fourier coefficient of f w.r.t. the trigonometric system (e_n) on \mathbb{T} (i.e., $e_n(z) = z^n$ for all $z \in \mathbb{T}$ and $n \in \mathbb{Z}$). Prove that $A(\mathbb{T})$ is a spectrally invariant subalgebra of $C(\mathbb{T})$.

1.11. Let X be a topological space, let $\beta X = \operatorname{Max} C_b(X)$, and let $\varepsilon \colon X \to \beta X$ take each $x \in X$ to the evaluation map $\varepsilon_x \colon C_b(X) \to \mathbb{C}$ given by $\varepsilon_x(f) = f(x)$.

(a) Prove that $(\beta X, \varepsilon)$ is the Stone-Čech compactification of X (i.e., for each compact Hausdorff topological space and each continuous map $f: X \to Y$ there exists a unique continuous map $\tilde{f}: \beta X \to Y$ such that $\tilde{f} \circ \varepsilon = f$).

- (b) Prove that $\varepsilon(X)$ is dense in βX .
- (c) Prove that ε is a homeomorphism onto $\varepsilon(X)$ if and only if X is completely regular.

1.12. Let G be a discrete group, and let \widehat{G} be the *Pontryagin dual* of G, i.e., the group of all homomorphisms from G to $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$. The standard topology on \widehat{G} is the topology of pointwise convergence (i.e., the topology inherited from \mathbb{T}^G).

(a) Construct a homeomorphism $Max(\ell^1(G)) \cong G$.

(b) Show that, under the identification $Max(\ell^1(G)) \cong \widehat{G}$, the Gelfand transform of $\ell^1(G)$ becomes the *Fourier transform*

$$\mathscr{F}: \ell^1(G) \to C(\widehat{G}), \quad (\mathscr{F}f)(\chi) = \sum_{x \in G} f(x)\chi(x).$$

1.13. Let A be a commutative algebra, and I be a maximal ideal of A. Prove that I is either modular or a codimension 1 ideal containing $A^2 = \operatorname{span}\{ab : a, b \in A\}$. As a consequence, if $A^2 = A$, then all maximal ideals of A are modular.

1.14. Let A be a commutative algebra, and let $Max_+(A) = Max(A) \cup \{A\}$. Prove that the map $Max(A_+) \to Max_+(A)$, $I \mapsto I \cap A$, is a bijection.

1.15. Construct a commutative Banach algebra A such that for each $t \in [0, 1]$ there exists a character χ of A with $\|\chi\| = t$. (Clearly, A cannot be unital, see the lectures.)

1.16. Construct a commutative Banach algebra which has a dense proper ideal. (Clearly, A cannot be unital, see the lectures.)