Замыкание, сходимость, сепарабельность...

- **2.1.** Пусть (X, ρ) метрическое пространство, $a \in X$, $r \geqslant 0$. Докажите, что замкнутый шар $\bar{B}_r(a) = \{x \in X : \rho(x, a) \leqslant r\}$ и сфера $S_r(a) = \{x \in X : \rho(x, a) = r\}$ являются замкнутыми подмножествами в X.
- **2.2.** Докажите, что в нормированном пространстве X (над \mathbb{R} или \mathbb{C}) замкнутый шар $\bar{B}_r(a)$ и сфера $S_r(a)$ не являются открытыми подмножествами в X. (Для начала можете считать, что X плоскость \mathbb{R}^2 с евклидовой нормой.) Верно ли это в произвольном метрическом пространстве?
- **2.3.** Для следующих подмножеств прямой \mathbb{R} найдите их замыкание, внутренность, границу, множества предельных и изолированных точек: (a) \mathbb{Z} ; (b) \mathbb{Q} ; (c) (0,1); (d) [0,1]; (e) $\{1/n : n \in \mathbb{N}\}$; (f) $\{1/n + 1/m : n, m \in \mathbb{N}\}$.
- **2.4.** Докажите, что в нормированном пространстве X (над \mathbb{R} или \mathbb{C}) замыканием открытого шара $B_r(a) = \{x \in X : \rho(x,a) < r\}$ является замкнутый шар $\bar{B}_r(a) = \{x \in X : \rho(x,a) \leqslant r\}$, а внутренностью $\bar{B}_r(a)$ является $B_r(a)$. Найдите границы шаров $B_r(a)$ и $\bar{B}_r(a)$, множества их предельных и изолированных точек. (Для начала можете считать, что X плоскость \mathbb{R}^2 с евклидовой нормой.) Верны ли полученные результаты в произвольном метрическом пространстве?
- **2.5.** Пусть X множество. Докажите, что последовательность функций (f_n) в \mathbb{R}^X сходится к функции f в топологии поточечной сходимости (определение см. в списке 1) тогда и только тогда, когда числовая последовательность $(f_n(x))$ сходится к f(x) для каждого $x \in X$.
- **2.6.** Снабдим пространство $\mathbb{R}^{\mathbb{R}}$ топологией поточечной сходимости. Найдите замыкание в $\mathbb{R}^{\mathbb{R}}$
- (а) множества всех многочленов;
- (b) множества всех функций, отличных от нуля лишь в конечном множестве точек.
- **2.7.** Пусть X множество. Снабдим X топологией, объявив замкнутыми все не более чем счетные подмножества X, а также само X.
- (a) Докажите, что эта конструкция действительно задает топологию на X.
- (b) Найдите простой критерий сходимости последовательности в X.
- (c) Может ли сходящаяся последовательность в X иметь более одного предела?
- (d) Обязательно ли X хаусдорфово?
- **2.8.** Приведите пример топологического пространства X и его подмножества A, не всякая точка замыкания которого является пределом последовательности точек из A.
- **2.9.** Докажите сепарабельность пространств (a) \mathbb{R}^n (со стандартной топологией; см. задачу 1.4); (b) ℓ^1 ; (c) ℓ^2 .
- **2.10.** Докажите, что пространство ℓ^{∞} несепарабельно.
- 2.11. (а) Докажите, что сепарабельное метризуемое пространство (в частности, любое пространство из задачи 2.9) имеет счетную базу.
- (b) Приведите пример, показывающий, что для неметризуемых пространств это неверно.