13.1. Let G be a locally compact abelian group, and let $f, g \in L^1(G)$. Show that (a) $(L_x f)^{\widehat{}} = \varepsilon_x \widehat{f}$ $(x \in G)$; (b) $(\chi f)^{\widehat{}} = L_{\chi^{-1}} \widehat{f}$ $(\chi \in \widehat{G})$; (c) $L_x(f * g) = L_x f * g = f * L_x g$ $(x \in G)$.

13.2. Let G be a locally compact abelian group. Show that for every $f \in L^1(G)$, $g \in L^2(G)$ we have $(f * g)^{\widehat{}} = \widehat{f}\widehat{g}$.

13.3. Let G be a locally compact group. The reduced group C^* -algebra of G is the C^* -subalgebra $C^*_r(G)$ of $\mathscr{B}(L^2(G))$ generated by the image of the left regular representation $\lambda \colon L^1(G) \to \mathscr{B}(L^2(G))$. Prove that, if G is abelian, then the canonical map $C^*(G) \to C^*_r(G)$ is an isomorphism.

13.4. Let G be a locally compact abelian group. Show that

- (a) G is compact iff \widehat{G} is discrete;
- (b) G is discrete iff \widehat{G} is compact.

13.5. Let G be a compact abelian group equipped with the normalized Haar measure (i.e., the measure of G is 1). Show that the Plancherel measure on \widehat{G} is the counting measure.

13.6. Let (G_i) be a family of compact abelian groups. Construct a topological isomorphism $(\prod G_i)^{\widehat{}} \oplus \widehat{G}_i$ (where $\bigoplus \widehat{G}_i$ is equipped with the discrete topology).

13.7. Construct a (non-topological) isomorphism between $\widehat{\mathbb{Z}}_p$ (see Exercise 4.10) and a certain subgroup of \mathbb{T} .

13.8. (a) Given $x = \sum_k a_k p^k \in \mathbb{Q}_p$ (see Exercise 4.10), let $\lambda(x) = \sum_{k<0} a_k p^k \in \mathbb{Q}$. Define a character $\chi_x \colon \mathbb{Q}_p \to \mathbb{T}$ by $\chi_x(y) = e^{2\pi i \lambda(xy)}$. Show that χ_x is continuous, and that the map $\mathbb{Q}_p \to \widehat{\mathbb{Q}}_p$, $x \mapsto \chi_x$, is a topological isomorphism.

(b) Let μ denote the Haar measure on \mathbb{Q}_p normalized in such a way that $\mu(\mathbb{Z}_p) = 1$ (see Exercise 4.11). Identify $\widehat{\mathbb{Q}}_p$ with \mathbb{Q}_p , as in (a). Find the respective Plancherel measure on \mathbb{Q}_p .

13.9. Let G be a locally compact abelian group. Given a closed subgroup $H \subset G$, define the *annihilator* of H by $H^{\perp} = \{\chi \in \widehat{G} : \chi | H = 1\}$.

(a) Show that $H^{\perp\perp} = H$ (here $\widehat{\widehat{G}}$ is canonically identified with G).

(b) Construct topological isomorphisms $\widehat{G/H} \cong H^{\perp}, \ \widehat{H} \cong \widehat{G}/H^{\perp}$.

(c) A short exact sequence $1 \to G' \xrightarrow{i} G \xrightarrow{p} G'' \to 1$ of locally compact abelian groups is *strictly* exact if *i* is a topological embedding and *p* is a quotient map. Show that a sequence of the above form is strictly exact iff the dual sequence is strictly exact.