6.1. Let G be a locally compact group. As was shown in the lectures, $L^1(G)$ is a Banach algebra under convolution.

(a) Show that $L^1(G)$ is a Banach *-algebra w.r.t. the involution $f^*(x) = \overline{f(x^{-1})}\Delta(x^{-1})$ $(f \in L^1(G), x \in G)$.

(b) Show that $L^1(G)$ (equipped with the standard L^1 -norm and with the involution defined in (a)) is not a C^* -algebra unless $G = \{e\}$.

(c) Show that $L^{1}(G)$ is commutative if and only if G is commutative.

(d) Show that $L^1(G)$ is unital if and only if G is discrete.

6.2. Let G be a locally compact group, and let $p, q \in (1, +\infty)$ satisfy 1/p + 1/q = 1. Show that, for each $f \in L^p(G)$ and $g \in L^q(G)$, the convolution f * Sg (where $(Sg)(x) = g(x^{-1})$) is defined everywhere on G, belongs to $C_0(G)$, and that $||f * Sg||_{\infty} \leq ||f||_p ||g||_q$.

6.3. Let $\mathscr{P}(\mathbb{T})$ denote the closure of $\mathbb{C}[z]$ in $C(\mathbb{T})$, where z is the coordinate on \mathbb{C} . Recall that the disk algebra $\mathscr{A}(\bar{\mathbb{D}})$ consists of those $f \in C(\bar{\mathbb{D}})$ that are holomorphic on the disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. Show that

(a) each $f \in \mathscr{P}(\mathbb{T})$ uniquely extends to $\tilde{f} \in \mathscr{A}(\bar{\mathbb{D}})$;

(b) the map $f \mapsto \tilde{f}$ is an isometric isomorphism of $\mathscr{P}(\mathbb{T})$ onto $\mathscr{A}(\bar{\mathbb{D}})$.

6.4. Show that (a) $C^n[a,b]$ $(n \ge 1)$ and (b) $\mathscr{A}(\overline{\mathbb{D}})$ are Banach *-algebras, but are not C^* -algebras. (Recall that the involution on $C^n[a,b]$ is given by $f^*(t) = \overline{f(t)}$, while the involution on $\mathscr{A}(\overline{\mathbb{D}})$ is given by $f^*(z) = \overline{f(z)}$.)

6.5. Let A be a normed algebra, and let (e_{α}) be a bounded approximate identity in A. Show that (a) if B is a normed algebra and $\varphi \colon A \to B$ is a continuous homomorphism such that $\overline{\varphi(A)} = B$, then $(\varphi(e_{\alpha}))$ is a bounded approximate identity in B;

(b) if A is a normed *-algebra, then $(e_{\alpha}^*e_{\alpha})$ is a bounded approximate identity in A.

6.6. Let X be a locally compact Hausdorff topological space.

- (a) Construct a bounded approximate identity in $C_0(X)$.
- (b) Show that $C_0(X)$ has a sequential bounded approximate identity if and only if X is σ -compact.

6.7. Let H be a Hilbert space.

- (a) Construct a bounded approximate identity in $\mathcal{K}(H)$.
- (b) Show that $\mathscr{K}(H)$ has a sequential bounded approximate identity if and only if H is separable.

6.8. Let G be a locally compact group, and let (u_i) be a Dirac net in $L^1(G)$. Identify $L^1(G)$ with a subspace of $C_0(G)^*$ via $f \mapsto I_f$, where $I_f(g) = \int_G fg \, d\mu \ (g \in C_0(G))$. Show that (u_i) converges to the evaluation functional $g \mapsto g(e)$ (the "Dirac δ -function") w.r.t. the weak* topology on $C_0(G)^*$.