3.1. As in Exercises 2.8 and 2.9, define the convolution product on $L^{1}(\mathbb{R})$, show that $L^{1}(\mathbb{R})$ is a commutative nonunital algebra, and prove that the Fourier transform $\mathscr{F}_{\mathbb{R}}: L^{1}(\mathbb{R}) \rightarrow C_{0}(\mathbb{R})$ is an algebra homomorphism.
3.2. Suppose that $f \in C^{1}(\mathbb{R})$ and that $f, f^{\prime} \in L^{1}(\mathbb{R})$. Prove that $\left(f^{\prime}\right)^{\wedge}(\lambda)=2 \pi i \lambda \hat{f}(\lambda)(\lambda \in \mathbb{R})$. Deduce that if $f \in C^{p}(\mathbb{R})$ and $f, f^{\prime}, \ldots, f^{(p)} \in L^{1}(\mathbb{R})$, then $\hat{f}(\lambda)=o\left(|\lambda|^{-p}\right)$ as $\lambda \rightarrow \infty$.
3.3. Formulate and prove a result similar to Exercise 3.2 for the Fourier transform on \mathbb{T}.
3.4. Let $t=\mathbf{1}_{\mathbb{R}}$ denote the identity map on \mathbb{R}. Let $f \in L^{1}(\mathbb{R})$, and suppose that $t f \in L^{1}(\mathbb{R})$. Show that $\hat{f} \in C^{1}(\mathbb{R})$, and that $\hat{f}^{\prime}(\lambda)=-2 \pi i(t f)^{\wedge}(\lambda)(\lambda \in \mathbb{R})$. Deduce that if $f, t f, \ldots, t^{p} f \in L^{1}(\mathbb{R})$, then $\hat{f} \in C^{p}(\mathbb{R})$.
3.5. Formulate and prove a result similar to Exercise 3.4 for the Fourier transform on \mathbb{Z}.
3.6. Let $\mathscr{F}: L^{1}(\mathbb{R}) \rightarrow C_{0}(\mathbb{R})$ denote the Fourier transform, and let $\hat{\mathscr{F}}=S \mathscr{F}$, where $(S f)(t)=f(-t)$ $(t \in \mathbb{R})$.
(a) Show that \mathscr{F} and $\hat{\mathscr{F}}$ map the Schwartz space $\mathscr{S}(\mathbb{R})$ continuously into itself.
(b) Suppose that $T: \mathscr{S}(\mathbb{R}) \rightarrow \mathscr{S}(\mathbb{R})$ is a linear map commuting with $\frac{d}{d t}$ and with the multiplication by the coordinate t. Show that $T=c \mathbf{1}_{\mathscr{S}(\mathbb{R})}$ for some $c \in \mathbb{C}$.
(c) Let $f(t)=e^{-\pi t^{2}}(t \in \mathbb{R})$. Show that $\hat{f}=f$.
(d) Deduce from (a), (b), (c) that $\mathscr{F} \hat{\mathscr{F}}=\hat{\mathscr{F}} \mathscr{F}=\mathbf{1}_{\mathscr{S}(\mathbb{R})}$ on $\mathscr{S}(\mathbb{R})$. In other words, \mathscr{F} is a topological isomorphism of $\mathscr{S}(\mathbb{R})$ onto itself, and $\mathscr{F}^{2}=S$ on $\mathscr{S}(\mathbb{R})$.
3.7. (This is an analog of Exercise 3.6 for \mathbb{Z} and \mathbb{T}.) Let $C_{2 \pi}^{\infty}(\mathbb{R})$ denote the space of all smooth 2π periodic functions on \mathbb{R}, and let $j: C^{\infty}(\mathbb{T}) \rightarrow C_{2 \pi}^{\infty}(\mathbb{R})$ denote the vector space isomorphism given by $(j f)(t)=f\left(e^{i t}\right)(t \in \mathbb{R})$. Given $f \in C^{\infty}(\mathbb{T})$, define the derivative $f^{\prime} \in C^{\infty}(\mathbb{T})$ of f by $f^{\prime}=j^{-1}\left(j(f)^{\prime}\right)$. The higher derivatives $f^{(k)}$ are defined in an obvious way. We endow $C^{\infty}(\mathbb{T})$ with the topology generated by the family $\left\{\|\cdot\|_{k}: k \in \mathbb{Z}_{\geqslant 0}\right\}$ of seminorms, where $\|f\|_{k}=\sup _{z \in \mathbb{T}}\left|f^{(k)}(z)\right|$.

We define the space of rapidly decreasing sequences by

$$
s(\mathbb{Z})=\left\{x=\left(x_{n}\right) \in \mathbb{C}^{\mathbb{Z}}:\|x\|_{k}=\sup _{n \in \mathbb{Z}}\left|x_{n} \| n\right|^{k}<\infty \forall k \in \mathbb{Z}_{\geqslant 0}\right\}
$$

and topologize $s(\mathbb{Z})$ by the family $\left\{\|\cdot\|_{k}: k \in \mathbb{Z}_{\geqslant 0}\right\}$ of seminorms. Prove that
(a) $\mathscr{F}_{\mathbb{Z}}$ maps $s(\mathbb{Z})$ continuously into $C^{\infty}(\mathbb{T})$;
(b) $\mathscr{F}_{\mathbb{T}}$ maps $C^{\infty}(\mathbb{T})$ continuously into $s(\mathbb{Z})$;
(c) $\mathscr{F}_{\mathbb{T}} \mathscr{F}_{\mathbb{Z}}=S_{\mathbb{Z}}$ and $\mathscr{F}_{\mathbb{Z}} \mathscr{F}_{\mathbb{T}}=S_{\mathbb{T}}$, where $\left(S_{\mathbb{Z}} f\right)(n)=f(-n)$ and $\left(S_{\mathbb{T}} g\right)(z)=g\left(z^{-1}\right)$ for every $f \in s(\mathbb{Z})$ and $g \in C^{\infty}(\mathbb{T})$. As a consequence, $\mathscr{F}_{\mathbb{Z}}$ and $\mathscr{F}_{\mathbb{T}}$ are topological isomorphisms between $s(\mathbb{Z})$ and $C^{\infty}(\mathbb{T})$.
3.8. Given $\lambda \in \mathbb{R}$, let $\chi_{\lambda}(t)=e^{-2 \pi i \lambda t}(t \in \mathbb{R})$. (Recall that the χ_{λ} 's are precisely the unitary characters of \mathbb{R}.) Find the Fourier transforms of χ_{λ} and of the Dirac δ-function δ_{λ}.
3.9. Let $s^{\prime}(\mathbb{Z})$ denote the topological dual of $s(\mathbb{Z})$ (i.e., the space of all continuous linear functionals on $s(\mathbb{Z})$). Show that the map $\varphi \mapsto\left(\varphi\left(\delta_{n}\right)\right)_{n \in \mathbb{Z}}$ is a vector space isomorphism between $s^{\prime}(\mathbb{Z})$ and the space of tempered sequences

$$
\left\{x=\left(x_{n}\right) \in \mathbb{C}^{\mathbb{Z}}:\left|x_{n}\right||n|^{-k} \text { is bounded for some } k \in \mathbb{Z}_{\geqslant 0}\right\}
$$

3.10. Let $\mathscr{D}^{\prime}(\mathbb{T})$ denote the topological dual of $C^{\infty}(\mathbb{T})$ (i.e., the space of all continuous linear functionals on $C^{\infty}(\mathbb{T})$). The elements of $\mathscr{D}^{\prime}(\mathbb{T})$ are called distributions on \mathbb{T}. Given $f \in L^{1}(\mathbb{T})$, define $\varphi_{f} \in \mathscr{D}^{\prime}(\mathbb{T})$ by $\varphi_{f}(g)=\int_{\mathbb{T}} f g d \mu$. Show that the map $L^{1}(\mathbb{T}) \rightarrow \mathscr{D}^{\prime}(\mathbb{T}), f \mapsto \varphi_{f}$, is injective.
3.11. Define the Fourier transforms $\mathscr{F}_{\mathbb{Z}}: s^{\prime}(\mathbb{Z}) \rightarrow \mathscr{D}^{\prime}(\mathbb{T})$ and $\mathscr{F}_{\mathbb{T}}: \mathscr{D}^{\prime}(\mathbb{T}) \rightarrow s^{\prime}(\mathbb{Z})$ to be the maps dual to $\mathscr{F}_{\mathbb{T}}: C^{\infty}(\mathbb{T}) \rightarrow s(\mathbb{Z})$ and $\mathscr{F}_{\mathbb{Z}}: s(\mathbb{Z}) \rightarrow C^{\infty}(\mathbb{T})$, respectively.
(a) Identify $c_{0}(\mathbb{Z})$ with a subspace of $s^{\prime}(\mathbb{Z})$ via Exercise 3.9 , and identify $L^{1}(\mathbb{T})$ with a subspace of $\mathscr{D}^{\prime}(\mathbb{T})$ via Exercise 3.10. Show that that the Fourier transforms on $s^{\prime}(\mathbb{Z})$ and on $\mathscr{D}^{\prime}(\mathbb{T})$ extend the "classical" Fourier transforms $\ell^{1}(\mathbb{Z}) \rightarrow C(\mathbb{T})$ and $L^{1}(\mathbb{T}) \rightarrow c_{0}(\mathbb{Z})$.
(b) (This is an analog of Exercise 3.8.) Calculate the Fourier transforms of the unitary characters and of the Dirac δ-functions on \mathbb{Z} and on \mathbb{T}.
(c) (the Fourier series in $\mathscr{D}^{\prime}(\mathbb{T})$). Show that for each $f \in \mathscr{D}^{\prime}(\mathbb{T})$ we have $f=\sum_{n \in \mathbb{Z}} \hat{f}(n) \chi_{-n}$, where the series converges in the weak* topology on $\mathscr{D}^{\prime}(\mathbb{T})$ (i.e., the topology of pointwise convergence on elements of $\left.C^{\infty}(\mathbb{T})\right)$.
3.12. (a) Define a canonical topology on $C^{\infty}\left(\mathbb{T}^{2}\right)$ by analogy with $C^{\infty}(\mathbb{T})$.
(b) Show that the map

$$
C^{\infty}(\mathbb{T}) \otimes C^{\infty}(\mathbb{T}) \rightarrow C^{\infty}\left(\mathbb{T}^{2}\right), \quad f \otimes g \mapsto((z, w) \mapsto f(z) g(w))
$$

is injective and has dense image. From now on, we identify $C^{\infty}(\mathbb{T}) \otimes C^{\infty}(\mathbb{T})$ with a dense subspace of $C^{\infty}\left(\mathbb{T}^{2}\right)$ via the above map.
(c) (tensor product of distributions). For each φ, ψ in $\mathscr{D}^{\prime}(\mathbb{T})$ the element $\varphi \otimes \psi \in \mathscr{D}^{\prime}(\mathbb{T}) \otimes \mathscr{D}^{\prime}(\mathbb{T})$ may be viewed as a linear functional on $C^{\infty}(\mathbb{T}) \otimes C^{\infty}(\mathbb{T})$. Show that $\varphi \otimes \psi$ uniquely extends to a continuous linear functional on $C^{\infty}\left(\mathbb{T}^{2}\right)$.
(d) Define $\Delta: C^{\infty}(\mathbb{T}) \rightarrow C^{\infty}\left(\mathbb{T}^{2}\right)$ by $(\Delta f)(z, w)=f(z w)$. For each φ, ψ in $\mathscr{D}^{\prime}(\mathbb{T})$ define the convolution $\varphi * \psi \in \mathscr{D}^{\prime}(\mathbb{T})$ by

$$
\langle\varphi * \psi, f\rangle=\langle\varphi \otimes \psi, \Delta f\rangle \quad\left(f \in C^{\infty}(\mathbb{T})\right)
$$

Show that $\left(\mathscr{D}^{\prime}(\mathbb{T}), *\right)$ is a commutative unital algebra containing $L^{1}(\mathbb{T})$ and $\mathbb{C} \mathbb{T}$ as subalgebras. In particular, the convolution on $\mathscr{D}^{\prime}(\mathbb{T})$ agrees with those on $L^{1}(\mathbb{T})$ and on $\mathbb{C} \mathbb{T}$.
(e) Identify $s^{\prime}(\mathbb{Z})$ with the space of tempered sequences (see Exercise 3.9). Show that $s^{\prime}(\mathbb{Z})$ is a unital algebra under pointwise multiplication, and that the Fourier transforms $\mathscr{F}_{\mathbb{Z}}$ and $\mathscr{F}_{\mathbb{T}}$ (see Exercise 3.11) are algebra isomorphisms between $s^{\prime}(\mathbb{Z})$ and $\mathscr{D}^{\prime}(\mathbb{T})$.
3.13 (the Poisson summation formula). Identify \mathbb{T} with \mathbb{R} / \mathbb{Z}, and define $a: \mathscr{S}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{T})$ by $(a f)(t+\mathbb{Z})=\sum_{n \in \mathbb{Z}} f(t+n)$. Show that we indeed have $a f \in C^{\infty}(\mathbb{T})$ whenever $f \in \mathscr{S}(\mathbb{R})$, and that the diagram

commutes. Deduce that for each $f \in \mathscr{S}(\mathbb{R})$ we have

$$
\sum_{n \in \mathbb{Z}} f(t+n)=\sum_{n \in \mathbb{Z}} \hat{f}(n) e^{2 \pi i n t} \quad(t \in \mathbb{R})
$$

