2.1. Prove that the homomorphisms $\mathbb{T} \rightarrow \widehat{\mathbb{Z}}, \mathbb{Z} \rightarrow \widehat{\mathbb{T}}$, and $\mathbb{R} \rightarrow \widehat{\mathbb{R}}$ that were constructed at the lecture are indeed topological isomorphisms.
2.2. Prove that the characters of \mathbb{T} form an orthonormal set in $L^{2}(\mathbb{T})$.
2.3. Prove that the Fourier transform $\mathscr{F}_{\mathbb{T}}: L^{1}(\mathbb{T}) \rightarrow c_{0}(\mathbb{Z})$ is not surjective. (Hint: the dual spaces of $L^{1}(\mathbb{T})$ and $c_{0}(\mathbb{Z})$ are not isomorphic.)

For each $k \in \mathbb{Z}$ define $\chi_{k}: \mathbb{T} \rightarrow \mathbb{T}$ by $\chi_{k}(z)=z^{-k}$ (recall that the functions χ_{k} are precisely the characters of \mathbb{T}). The function $D_{n}=\sum_{k=-n}^{n} \chi_{k}$ on \mathbb{T} is called the Dirichlet kernel. For an arbitrary $f \in L^{1}(\mathbb{T})$ set $S_{n} f=\sum_{k=-n}^{n} \hat{f}(k) \chi_{-k}$.
2.4. (a) Prove that for each $f \in L^{1}(\mathbb{T})$ we have $S_{n} f=f * D_{n}$. (Hint: compare the Fourier transforms of these functions).
(b) Let $g \in L^{1}(\mathbb{T})$. Define a functional $\varphi_{g}: C(\mathbb{T}) \rightarrow \mathbb{C}$ by the formula $\varphi_{g}(f)=\int_{\mathbb{T}} f(z) g(z) d \mu(z)$. Prove that $\left\|\varphi_{g}\right\|=\|g\|_{1}$.
(c) Prove that

$$
D_{n}\left(e^{i t}\right)=1+2 \cos t+2 \cos 2 t+\cdots+2 \cos n t=\frac{\sin \left(n+\frac{1}{2}\right) t}{\sin \frac{t}{2}}
$$

Deduce that $\left\|D_{n}\right\|_{1} \rightarrow \infty$ as $n \rightarrow \infty$.
(d) Prove that there exists a function $f \in C(\mathbb{T})$ whose Fourier series diverges at $z=1$. It follows that $\mathscr{F}_{\mathbb{Z}}: \ell^{1}(\mathbb{Z}) \rightarrow C(\mathbb{T})$ is not surjective. (Hint: It follows from (a) that $\left(S_{n} f\right)(1)=\varphi_{D_{n}}(f)$. Then use (b), (c) and the Banach-Steinhaus theorem.)
2.5. Compute $\left\|\hat{D}_{n}\right\|_{\infty}$. Combine this with part (c) of the previous exercise to find another proof of the fact that the Fourier transform $\mathscr{F}_{\mathbb{T}}: L^{1}(\mathbb{T}) \rightarrow c_{0}(\mathbb{Z})$ is not surjective.
2.6*. Prove that the series

$$
\sum_{n=2}^{\infty} \frac{z^{n}+z^{-n}}{n \ln n}
$$

converges uniformly on \mathbb{T} to a continuous function whose Fourier series is not absolutely convergent. This gives yet another proof of the fact that the Fourier transform $\mathscr{F}_{\mathbb{Z}}: \ell^{1}(\mathbb{Z}) \rightarrow C(\mathbb{T})$ is not surjective.
2.7. Fix $a \in \mathbb{T}$ and for any $f \in L^{2}(\mathbb{T})$ and for any $n \in \mathbb{N}$ define

$$
f_{n}(z)=\frac{1}{n} \sum_{k=0}^{n-1} f\left(a^{k} z\right)
$$

Prove that the sequence $\left(f_{n}\right)$ converges in $L^{2}(\mathbb{T})$ to some f. Find f.
2.8. The convolution of $f, g \in \ell^{1}(\mathbb{Z})$ is the function $f * g: \mathbb{Z} \rightarrow \mathbb{C}$ defined by the formula

$$
\begin{equation*}
(f * g)(n)=\sum_{k \in \mathbb{Z}} f(k) g(n-k) \quad(n \in \mathbb{Z}) \tag{1}
\end{equation*}
$$

(a) Prove that the series (1) converges absolutely, that $f * g \in \ell^{1}(\mathbb{Z})$, that $\|f * g\|_{1} \leqslant\|f\|_{1}\|g\|_{1}$, and that $\left(\ell^{1}(\mathbb{Z}), *\right)$ is a commutative unital algebra containing the group algebra $\mathbb{C Z}$ as a subalgebra.
(b) Prove that for any $f, g \in \ell^{1}(\mathbb{Z})$ we have $(f * g)^{\wedge}=\hat{f} \hat{g}$ (i.e., the Fourier transform $\mathscr{F}: \ell^{1}(\mathbb{Z}) \rightarrow$ $C(\mathbb{T})$ is an algebra homomorphism).
2.9. The convolution of $f, g \in L^{1}(\mathbb{T})$ is a function $f * g: \mathbb{T} \rightarrow \mathbb{C}$ defined by the formula

$$
\begin{equation*}
(f * g)(z)=\int_{\mathbb{T}} f(\zeta) g\left(\zeta^{-1} z\right) d \mu(\zeta) \quad(z \in \mathbb{T}) \tag{2}
\end{equation*}
$$

where μ is the standard measure on \mathbb{T} (arch length $/ 2 \pi$).
(a) Prove that the integral (2) exists for almost all $z \in \mathbb{T}$, that $f * g \in L^{1}(\mathbb{T})$, that $\|f * g\|_{1} \leqslant\|f\|_{1}\|g\|_{1}$, and that $\left(L^{1}(\mathbb{T}), *\right)$ is a commutative non-unital algebra.
(b) Prove that for any $f, g \in L^{1}(\mathbb{T})$ we have $(f * g)^{\wedge}=\hat{f} \hat{g}$ (i.e., the Fourier transform $\mathscr{F}: L^{1}(\mathbb{T}) \rightarrow$ $c_{0}(\mathbb{Z})$ is an algebra homomorphism).
2.10 (the Fourier inversion formula on \mathbb{T}). Let $A(\mathbb{T})=\mathscr{F}_{\mathbb{Z}}\left(\ell^{1}(\mathbb{Z})\right)$. By the previous exercises, $A(\mathbb{T})$ is a proper dense subalgebra of $C(\mathbb{T})$ (the Fourier algebra of \mathbb{T}, or the Wiener algebra). Show that the following properties of $f \in L^{1}(\mathbb{T})$ are equivalent:
(i) $\hat{f} \in \ell^{1}(\mathbb{Z})$.
(ii) There is a (necessarily unique) $f_{0} \in A(\mathbb{T})$ such that $f=f_{0}$ a.e. on \mathbb{T}.

Show that, if f satisfies the above conditions, then $f_{0}(z)=\sum_{n \in \mathbb{Z}} \hat{f}(n) z^{n}$ for all $z \in \mathbb{T}$. In other words, $\mathscr{F}_{\mathbb{T}}: A(\mathbb{T}) \rightarrow \ell^{1}(\mathbb{Z})$ is a bijection, and $\mathscr{F}_{\mathbb{Z}} \mathscr{F}_{\mathbb{T}}=S_{\mathbb{T}}\left(\right.$ where $S_{\mathbb{T}}$ is given by $\left(S_{\mathbb{T}} f\right)(z)=f\left(z^{-1}\right)$).

