Convention. All vector spaces are over \mathbb{C} .

- 1.1. Prove that every character of a finite group is unitary.
- **1.2.** Prove that a finite group has an injective character iff it is cyclic.
- **1.3.** Describe all characters of (a) S_n ; (b) D_n ; (c) Q_8 .
- **1.4.** Prove that, for a finite group, the intersection of the kernels of all the characters is the commutator subgroup (that is, the subgroup generated by all possible commutators $xyx^{-1}y^{-1}$).
- **1.5.** Let G be a finite group, and let $\operatorname{Fun}(G) = \mathbb{C}^G$ be the space of all functions on G. Recall that the convolution on $\operatorname{Fun}(G)$ is a bilinear map uniquely determined by $\delta_x * \delta_y = \delta_{xy} \ (x, y \in G)$, where δ_x is the function equal to 1 at $x \in G$ and 0 elsewhere. Prove that for all $f, g \in \operatorname{Fun}(G)$ we have

$$(f * g)(x) = \sum_{y \in G} f(y)g(y^{-1}x)$$
 $(x \in G).$

1.6. Let G be a finite abelian group of order n, and let $\pi \colon G \to \operatorname{GL}(V)$ be a representation on a finite-dimensional vector space V. For every $\chi \in \widehat{G}$ define $V_{\chi} = \{v \in V : \pi(x)v = \chi(x)v \ \forall x \in G\}$. Define an operator P_{χ} on V by

$$P_{\chi} = \frac{1}{n} \sum_{x \in G} \overline{\chi(x)} \pi(x).$$

- (a) Prove that $P_{\chi}P_{\tau} = \delta_{\chi\tau}P_{\chi}$, $\sum_{\chi\in\widehat{G}}P_{\chi} = \mathbf{1}_{V}$, and $\operatorname{Im}P_{\chi} = V_{\chi}$. Deduce that $V = \bigoplus_{\chi\in\widehat{G}}V_{\chi}$ and that P_{χ} is a projection onto V_{χ} along $\bigoplus_{\tau\neq\chi}V_{\tau}$.
- (b) Find V_{χ} in the case where π is the regular representation of G on $\operatorname{Fun}(G)$ given by $(\pi(x)f)(y) = f(yx)$.
- **1.7.** Let G be a finite abelian group. Prove that the following properties of a linear operator $T \colon \operatorname{Fun}(G) \to \operatorname{Fun}(G)$ are equivalent:
 - (i) T is shift invariant (i.e., $T\pi(x) = \pi(x)T$ for all $x \in G$, where π is the regular representation from the previous exercise);
 - (ii) there exists a function $f \in \text{Fun}(G)$ such that Th = f * h for all $h \in \text{Fun}(G)$;
- (iii) all characters of G are eigenvectors for T.
- **1.8.** Let G be a finite abelian group, and let H be a subgroup of G.
- (a) Construct an isomorphism $(G/H)^{\hat{}} \cong H^{\perp}$, where $H^{\perp} = \{\chi \in \widehat{G} : \chi|_{H} = 0\}$ is the annihilator of H in \widehat{G} .
- (b) (the Poisson summation formula). Define $a: \operatorname{Fun}(G) \to \operatorname{Fun}(G/H)$ by $(af)(xH) = \sum_{y \in H} f(xy)$. Show that the diagram

$$\operatorname{Fun}(G) \xrightarrow{\mathscr{F}_G} \operatorname{Fun}(G)$$

$$\downarrow^{\operatorname{restr.}}$$

$$\operatorname{Fun}(G/H) \xrightarrow{\mathscr{F}_H} \operatorname{Fun}(H^{\perp})$$

commutes. Deduce that for each $f \in \text{Fun}(G)$ we have

$$\sum_{y \in H} f(xy) = \frac{1}{(G:H)} \sum_{\chi \in H^{\perp}} \hat{f}(\chi) \overline{\chi(x)} \qquad (x \in G).$$