Abstract. Trees: elemenraty facts and the Prüfer code.

A graph (finite, undirected) is thought to be a finite set of points (called vertices), some of them being joined with lines (called edges). There may be lines joining a vertex with itself (loops); two vertices may be joined by more than one line (multiple, or parallel, edges).

A simple path in a graph is a sequence e_{1}, \ldots, e_{k} of pairwise distinct edges such that e_{i} and e_{i+1}, for all $i=1, \ldots, k$, have a common vertex, and e_{i} and e_{j} with $j \neq i \pm 1$ have no common vertices. A cycle is like a simple path with one exception: e_{1} and e_{k} have a common vertex, too. A tree is a graph in which any two vertices can be joined by a simple path, and there are no cycles.

Theorem 1. In a tree any two vertices are joined by a unique simple path.
The idea of proof. Suppose there are two simple paths; let u_{1} be the first vertex where they diverge, and u_{2}, the first vertex on the first path that belong to the second path as well. Then parts of the paths between the vertices u_{1} and u_{2} form a cycle.

A vertex in a graph is called hanging if it is incident to one edge only (and this edge is not a loop).
Theorem 2. Any tree has at least two hanging vertices. Deleting a hanging vertex together with the incident edge gives another tree.

Proof. Take the longest simple path e_{1}, \ldots, e_{k} in a tree (why does it exist?), and let v_{0}, v_{1} be the starting and the final vertex of this path; we prove that both are hanging. Indeed, v_{1} is incident to the edge e_{k} of the path; suppose it is incident to another edge, e. A simple path cannot pass a vertex twice; so, the edge e does not enter the path. Therefore, e_{1}, \ldots, e_{k}, e is a simple path longer than e_{1}, \ldots, e_{k}, contrary to the choice. The proof for v_{0} is similar.

If one deletes a vertex and an edge from a graph having no cycles, cycles would not appear. Any two vertices of the graph T^{\prime} obtained from a tree T by deletion can be joined by a simple path in T. This path cannot pass the deleted vertex (because it is hanging), so it is a simple path in T^{\prime} as well. Hence, T^{\prime} is a tree.
Corollary 1. If a tree has n vertices then it has $n-1$ edges.
Proof. Induction by the number of vertices: if $n=1$ then a tree cannot contain edges (i.e. loops). Let T be a tree with n vertices and e edges; take a hanging vertex and delete it together with the incident edge. The graph obtained is a tree T^{\prime} with $n-1<n$ vertices; by the induction hyothesis the number of its edges is equal to $e-1=n-2$, so that $e=n-1$.

The Prüfer code is an algorithm relating to every tree T with n vertices a sequence $b_{1} \ldots b_{n-2}$ of integers, $1 \leq b_{i} \leq n$ for all $i=1, \ldots, n-2$. It acts as follows: take a hanging vertex v_{i} of T with the maximal number (among the hanging vertices), and let b_{1} be the number of the other end of the single edge incident to v_{i}. Delete v_{i} and the edge and repeat the procedure for the tree T^{\prime} obtained, to get b_{2}, then b_{3}, etc.

A Prüfer code behaves nicely under the deletion of a hanging vertex together with the incident edge. Namely, if $b=b_{1} \ldots b_{n-2}$ is a Prüfer code for a tree T then the hanging vertices are exactly vertices whose numbers do not enter b. If one deletes a hanging vertex with the maximal number v together with the incident edge, and renumbers the vertices of the tree T^{\prime} obtained skipping v (that is, all the vertices with the numbers $v_{i}<v$ preserve their numbers, and every vertex with the number $v_{i}>v$ gets $v_{i}-1$ instead), then the Prüfer code for T^{\prime} becomes $b_{2}^{\prime} \ldots b_{n-2}^{\prime}$ where $b_{i}^{\prime}=b_{i}$ if $b_{i}<v$ and $b_{i}^{\prime}=b_{i}-1$ if $b_{i}>v$.
Theorem 3. For any sequence $b=b_{1} \ldots b_{n-2}$ of integers such that $1 \leq b_{i} \leq n$ for all $i=1, \ldots, n-2$ there exists exactly one tree with n vertices having b as its Prüfer code.

Proof. Induction by n : for $n=3$ the statement is trivial (check!). Suppose we know the statement for sequences of any length smaller than $n-2$; now consider b. Let v be the maximal integer from 1 to n that does not enter b (it exists because the number of terms in b is less than n). Form a sequence $b^{\prime}=b_{2}^{\prime} \ldots b_{n-2}^{\prime}$ by the rule described above (if $b_{i}<v$ then $b_{i}^{\prime}=b_{i}$ and $b_{i}^{\prime}=b_{i}-1$ otherwise). The sequence b^{\prime} contains $n-3$ terms from 1 to $n-1$ (obviously, it cannot contain n). So, there exists a unique tree T^{\prime} such that b^{\prime} is its Prüfer code. Change the numbering of vertices of T^{\prime} appropriately (the vertices with the numbers $v_{i}<v$ retain their numbers, while every vertex with the number $v_{i} \geq v$ gets $v_{i}+1$); a new tree $T^{\prime \prime}$ does not have a vertex numbered v. Form now a tree T joining the vertex b_{1} of $T^{\prime \prime}$ with the new vertex numbered v; it is easy to see that the Prüfer code of T is b. So
the existence of T is proved. The uniqueness: if T has b as its Prüfer code then the Prüfer code of T^{\prime} is b^{\prime}. By induction hypothesis, T^{\prime} is unique, has only one vertex numbered b_{1} which should be joined by an edge with the hanging vertex v - thus, T is uniquely restored.
Corollary 2. There exist n^{n-2} different trees with n vertices numbered 1 to n.

Exercises

A pair of vertices i, j of a tree T is said to form an inversion if $2 \leq i<j \leq n$ and the (unique) simple path joining i with 1 passes j. A tree is called monotonic if it has no inversions.

Exercise 1. a) What is the biggest possible number of inversions in a tree with n vertices? Prove that for every n there exists exactly one tree with this number of inversions. b) Form a table: how many are there trees with n vertices and k inversions, for $n \leq 4$ and all possible k ? c) Which sequences $b_{1} \ldots b_{n-2}$ are Prüfer codes of the monotonic trees? How many are there monotonic trees with n vertices? d) How to find the number of inversions in a tree T using its Prüfer code? e) How many are there trees having exactly 1 inversion? f^{*}) Exactly 2 inversions?

