
HSE, FALL 2018 COMBINATORICS

LECTURE 6.

Abstract. Trees: elemenraty facts and the Pr�ufer code.

A graph (�nite, undirected) is thought to be a �nite set of points (called vertices), some of them being joined
with lines (called edges). There may be lines joining a vertex with itself (loops); two vertices may be joined by
more than one line (multiple, or parallel, edges).

A simple path in a graph is a sequence e1; : : : ; ek of pairwise distinct edges such that ei and ei+1, for all
i = 1; : : : ; k, have a common vertex, and ei and ej with j 6= i± 1 have no common vertices. A cycle is like a simple
path with one exception: e1 and ek have a common vertex, too. A tree is a graph in which any two vertices can be
joined by a simple path, and there are no cycles.
Theorem 1. In a tree any two vertices are joined by a unique simple path.
The idea of proof. Suppose there are two simple paths; let u1 be the �rst vertex where they diverge, and u2, the
�rst vertex on the �rst path that belong to the second path as well. Then parts of the paths between the vertices
u1 and u2 form a cycle. ¤

A vertex in a graph is called hanging if it is incident to one edge only (and this edge is not a loop).
Theorem 2. Any tree has at least two hanging vertices. Deleting a hanging vertex together with the incident edge
gives another tree.
Proof. Take the longest simple path e1; : : : ; ek in a tree (why does it exist?), and let v0, v1 be the starting and the
�nal vertex of this path; we prove that both are hanging. Indeed, v1 is incident to the edge ek of the path; suppose
it is incident to another edge, e. A simple path cannot pass a vertex twice; so, the edge e does not enter the path.
Therefore, e1; : : : ; ek; e is a simple path longer than e1; : : : ; ek, contrary to the choice. The proof for v0 is similar.

If one deletes a vertex and an edge from a graph having no cycles, cycles would not appear. Any two vertices of
the graph T ′ obtained from a tree T by deletion can be joined by a simple path in T . This path cannot pass the
deleted vertex (because it is hanging), so it is a simple path in T ′ as well. Hence, T ′ is a tree. ¤

Corollary 1. If a tree has n vertices then it has n− 1 edges.
Proof. Induction by the number of vertices: if n = 1 then a tree cannot contain edges (i.e. loops). Let T be a tree
with n vertices and e edges; take a hanging vertex and delete it together with the incident edge. The graph obtained
is a tree T ′ with n− 1 < n vertices; by the induction hyothesis the number of its edges is equal to e− 1 = n− 2,
so that e = n− 1. ¤

The Pr�ufer code is an algorithm relating to every tree T with n vertices a sequence b1 : : : bn−2 of integers,
1 ≤ bi ≤ n for all i = 1; : : : ; n − 2. It acts as follows: take a hanging vertex vi of T with the maximal number
(among the hanging vertices), and let b1 be the number of the other end of the single edge incident to vi. Delete
vi and the edge and repeat the procedure for the tree T ′ obtained, to get b2, then b3, etc.

A Pr�ufer code behaves nicely under the deletion of a hanging vertex together with the incident edge. Namely,
if b = b1 : : : bn−2 is a Pr�ufer code for a tree T then the hanging vertices are exactly vertices whose numbers do
not enter b. If one deletes a hanging vertex with the maximal number v together with the incident edge, and re-
numbers the vertices of the tree T ′ obtained skipping v (that is, all the vertices with the numbers vi < v preserve
their numbers, and every vertex with the number vi > v gets vi − 1 instead), then the Pr�ufer code for T ′ becomes
b′2 : : : b′n−2 where b′i = bi if bi < v and b′i = bi − 1 if bi > v.
Theorem 3. For any sequence b = b1 : : : bn−2 of integers such that 1 ≤ bi ≤ n for all i = 1; : : : ; n− 2 there exists
exactly one tree with n vertices having b as its Pr�ufer code.
Proof. Induction by n: for n = 3 the statement is trivial (check!). Suppose we know the statement for sequences
of any length smaller than n− 2; now consider b. Let v be the maximal integer from 1 to n that does not enter b
(it exists because the number of terms in b is less than n). Form a sequence b′ = b′2 : : : b′n−2 by the rule described
above (if bi < v then b′i = bi and b′i = bi − 1 otherwise). The sequence b′ contains n − 3 terms from 1 to n − 1
(obviously, it cannot contain n). So, there exists a unique tree T ′ such that b′ is its Pr�ufer code. Change the
numbering of vertices of T ′ appropriately (the vertices with the numbers vi < v retain their numbers, while every
vertex with the number vi ≥ v gets vi + 1); a new tree T ′′ does not have a vertex numbered v. Form now a tree
T joining the vertex b1 of T ′′ with the new vertex numbered v; it is easy to see that the Pr�ufer code of T is b. So

1



the existence of T is proved. The uniqueness: if T has b as its Pr�ufer code then the Pr�ufer code of T ′ is b′. By
induction hypothesis, T ′ is unique, has only one vertex numbered b1 which should be joined by an edge with the
hanging vertex v | thus, T is uniquely restored. ¤
Corollary 2. There exist nn−2 di�erent trees with n vertices numbered 1 to n.

Exercises
A pair of vertices i; j of a tree T is said to form an inversion if 2 ≤ i < j ≤ n and the (unique) simple path

joining i with 1 passes j. A tree is called monotonic if it has no inversions.
Exercise 1. a) What is the biggest possible number of inversions in a tree with n vertices? Prove that for every
n there exists exactly one tree with this number of inversions. b) Form a table: how many are there trees with
n vertices and k inversions, for n ≤ 4 and all possible k? c) Which sequences b1 : : : bn−2 are Pr�ufer codes of the
monotonic trees? How many are there monotonic trees with n vertices? d) How to �nd the number of inversions in
a tree T using its Pr�ufer code? e) How many are there trees having exactly 1 inversion? f*) Exactly 2 inversions?


