LECTURE 5.

Abstract. Binomial series, exponentials and logarithms.

Let α be an arbitrary complex number, and let k be a positive integer. The order k binomial coefficient of α is defined as

$$
\binom{\alpha}{k}=\frac{\alpha(\alpha-1)(\alpha-2) \ldots(\alpha-k+1)}{k!}
$$

Also take by definition $\binom{\alpha}{0}=1$ for any α.
Problem 1. a) Prove that if $\alpha=m$ is a nonnegative integer then $\binom{\alpha}{n}=\frac{m!}{n!(m-n)!}$ (so that the notation is consistent). b) Prove that $\binom{\alpha}{n} \neq 0$ for all n, except for the case when α is a nonnegative integer. c) Prove the Pascal's identity $\binom{\alpha}{n}=\binom{\alpha-1}{n}+\binom{\alpha-1}{n-1}$ for all $\alpha \in \mathbb{C}$ and $n \in \mathbb{Z}_{\geq 0}$.

The binomial series is defined as the power series

$$
(1+t)^{\alpha}=1+\binom{\alpha}{1} t+\binom{\alpha}{2} t^{2}+\binom{\alpha}{3} t^{3}+\ldots=\sum_{n=0}^{\infty}\binom{\alpha}{n} t^{n}
$$

By Newton's formula, if $\alpha=m$ is a nonnegative integer then the series is actually a polynomial equal to $(1+t)^{\alpha}=$ $(1+t)^{m}$. If α is not a nonnegative integer, then the binomial series is indeed an infinite power series.
Remark. We are not going to define $(x+y)^{\alpha}$ for two variables x and y and any α, to avoid discussing what x^{α} would mean if α is not an integer. (On the other hand, $1^{\alpha}=1$ for all α.)

An exponential is a power series

$$
\exp (t)=1+\frac{1}{1!} t+\frac{1}{2!} t^{2}+\frac{1}{3!} t^{3}+\ldots=\sum_{n=0}^{\infty} \frac{t^{n}}{n!}
$$

Problem 2. a) Prove that the exponential satisfies the differential equation $\exp ^{\prime}(t)=\exp (t)$. b) Prove that if a power series f satisfies $f^{\prime}(t)=f(t)$ then $f(t)=A \exp (t)$ for some constant A. c) Prove that the exponential satisfies the relation $\exp (t+s)=\exp (t) \exp (s)$. d) Prove that if a power series f satisfies $f(t+s)=f(t) f(s)$ then $f(t)=\exp (a t)$ for some constant a, or $f \equiv 0$.

A logarithm is defined as a power series

$$
\ln (1+t)=t-\frac{t^{2}}{2}+\frac{t^{3}}{3}-\ldots=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{t^{n}}{n}
$$

Problem 3. a) Prove that $\ln ^{\prime}(1+t)=1 /(1+t)$. b) Prove that if a power series f satisfies the differential equation $f^{\prime}(t)=\alpha f(t) /(1+t)$ then $f(t)=A(1+t)^{\alpha}$ for some constant A. c) Prove the identity $\exp (\alpha \ln (1+t))=(1+t)^{\alpha}$. d) Prove the identity $(1+t)^{\alpha+\beta}=(1+t)^{\alpha}(1+t)^{\beta}$.

Problem 4. a) Prove that $\ln ((1+s)(1+t))=\ln (1+s)+\ln (1+t)$. b) Prove that $\ln \left((1+t)^{\alpha}\right)=\alpha \ln (1+t)$.
Define the power series cos and sin by the equations $\cos t=\frac{1}{2}(\exp (i t)+\exp (-i t))$ and $\sin t=-\frac{i}{2}(\exp (i t)-$ $\exp (-i t))$.
Problem 5. a) Write down the power series $\cos t$ and $\sin t$ explicitly. b) Prove the identities $\cos ^{\prime} t=-\sin t$ and $\sin ^{\prime} t=\cos t$. c) Prove the identity $\cos ^{2} t+\sin ^{2} t=1$.

Define the power series $\arcsin t$ as

$$
\arcsin t=t+\frac{1}{2 \cdot 3} t^{3}+\frac{1 \cdot 3}{2 \cdot 4 \cdot 5} t^{5}+\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 7} t^{7}+\ldots=t+\sum_{n=1}^{\infty} \frac{(2 n-1)!!}{(2 n)!!\cdot(2 n+1)} t^{2 n+1}
$$

Problem 6. a) Prove that $\arcsin ^{\prime} t=\left(1-t^{2}\right)^{-1 / 2}$. b) Prove that $\sin \arcsin t=t$.

