ABSTRACT. Lattice paths and Catalan numbers.

Consider a rectangle $m \times n$ tiled by squares 1×1 ; boundaries of squares form a lattice. A peg standing in the lower left corner is moving to the upper right corner; only moves "up" and "right" are allowed. The motion of the peg is called a lattice path; its total length is m + n moves.

Theorem 1. There are $\binom{m+n}{m} = \binom{m+n}{n}$ different lattice paths.

Proof. The lattice path is uniquely determined by telling which m of the moves are "up" (the remaining n are "right").

Let f be a lattice path. Denote by $a_i(f)$, $0 \le i \le m$, the length of the path segment on the *i*-th horizontal. One has $0 \le a_i(f) \le n$ for each *i*, and $a_0(f) + \cdots + a_m(f) = n$. Apparently, for any numbers x_0, \ldots, x_m with these properties there exists exactly one lattice path f such that $a_i(f) = x_i$ for all $i = 1, \ldots, m$.

Corollary 1. The equation $x_0 + \cdots + x_m = n$ has $\binom{m+n}{m}$ nonnegative integer solutions.

The solutions are called compositions of n containing m + 1 parts.

For a lattice path f consider a sequence $0, \ldots, 0, 1, \ldots, m, \ldots, m$ where each value i is repeated $a_i(f)$ times (if $a_i(f) = 0$ then i is skipped). The sequence obtained $b_1(f), \ldots, b_n(f)$ contains n terms, is increasing (not strictly) and has the property $0 \le b_i(f) \le m$. Increasing sequences may be interpreted as multisets: a multiset is a finite sequence y_1, \ldots, y_n considered up to permutation of its terms. Thus $\{\{1, 1, 2\}\}$ and $\{\{1, 2, 2\}\}$ are the same multiset but $\{\{1, 1, 2\}\}$ and $\{\{1, 2, 2\}\}$ are not the same. Elements of a multiset can be uniquely arranged to form an increasing sequence.

Corollary 2. The total number of multisets of n elements x such that $0 \le x \le m$ is equal to $\binom{m+n}{m}$.

Take now m = n. The lattice path in the square $n \times n$ is called a Dyck path if it lies above (or on) the diagonal joining lower left corner with the upper right corner. The number of Dyck paths is called the *n*-th Catalan number and denoted (usually) by c_n . It is convenient to take $c_0 = 1$ by definition.

Theorem 2. The Catalan numbers satisfy the identity $c_n = \sum_{k=1}^n c_{k-1}c_{n-k}$ for any $n = 1, 2, \ldots$.

Proof. A Dyck path f starts on the diagonal at the point (0,0); let k be the smallest positive integer such that the point (k,k) lies on the path f (one has $1 \le k \le n$). Count the number of Dyck paths f with a fixed k.

The segment of the path f between the points (0,0) and (k,k) starts with a vertical move and finishes by a horizontal one. Between these moves there lies a Dyck path of 2(k-1) moves, shifted one position up. The number of such paths is c_{k-1} ($c_0 = 1$ by definition). The segment between the points (k,k) and (n,n) is a Dyck path of 2(n-k) moves; there are c_{n-k} of them. Thus a total number of Dyck path with a fixed k is $c_{k-1}c_{n-k}$.

Theorem 3. One has $C \stackrel{def}{=} \sum_{n=0}^{\infty} c_n t^n = \frac{1-\sqrt{1-4t}}{2t}$.

Proof. Multiply the identity from Theorem 2 by t^n and sum it over all $n = 1, 2, \ldots$ Since $c_0 = 1$, one has

$$C - 1 = \sum_{n=1}^{\infty} c_n t^n = \sum_{n=1}^{\infty} \sum_{k=1}^n c_{k-1} c_{n-k} t^n = t \sum_{n=1}^{\infty} \sum_{k=1}^n c_{k-1} t^{k-1} \cdot c_{n-k} t^{n-k}$$

changing variables $p \stackrel{\text{def}}{=} k - 1$ and $q \stackrel{\text{def}}{=} n - k$

$$= t \left(\sum_{p=0}^{\infty} c_p t^p\right) \cdot \left(\sum_{q=0}^{\infty} c_q t^q\right) = tC^2$$

The quadratic equation obtained has two solutions: $C = (1 + \sqrt{1 - 4t})/(2t)$ and $C = (1 - \sqrt{1 - 4t})/(2t)$, but only the second one is equal to 1 at t = 0.

Corollary 3. $c_n = \frac{1}{n+1} \binom{2n}{n} = \frac{(2n)!}{n!(n+1)!}$

Proof. By Newton's binomial formula for the exponent 1/2 one has

$$\begin{split} \sqrt{1-4t} &= 1 + \sum_{n=1}^{\infty} (-1)^n \binom{1/2}{n} 4^n t^n = 1 + \sum_{n=1}^{\infty} (-1)^n \frac{1}{n!} \frac{1}{2} \cdot \left(-\frac{1}{2}\right) \cdot \left(-\frac{3}{2}\right) \cdot \dots \cdot \left(-\frac{2n-3}{2}\right) 4^n t^n \\ &= 1 + \sum_{n=1}^{\infty} (-1)^{2n-1} \frac{1 \cdot 3 \cdot \dots \cdot (2n-3)}{2^n n!} 4^n t^n = 1 - \sum_{n=1}^{\infty} \frac{(2n-2)!}{2^{2n-1} (n-1)! n!} 2^{2n} t^n, \end{split}$$

hence, $(1 - \sqrt{1 - 4t})/(2t) = \sum_{n=1}^{\infty} \frac{(2n-2)!}{n!(n-1)!} t^{n-1}$. Changing the summation variable $n \mapsto n+1$ one obtains the required formula.

EXERCISES

Exercise 1. Prove that c_n is equal to the number of balanced bracket structures containing n pairs of brackets.

For example, for one pair or brackets the only structure is (); for two pairs there are two: ()() and (()), etc.

Exercise 2. Prove that c_n is equal to the number of triangulations of a convex (n + 2)-gon by diagonals. Triangulation is a splitting of the polygon into triangles; some of the triangles may have common sides and/or vertices, but have otherwise no intersections. The vertices of the polygon are numbered $1, 2, \ldots, (n + 2)$ counterclockwise.

For example, a square with the vertices 1, 2, 3, 4 has $c_2 = 2$ triangulations: draw either a diagonal 1, 3 or a diagonal 2, 4. For a pentagon there are $c_3 = 5$ triangulations; if the pentagon is regular they are mapped one to the other by rotations.

Exercise 3. Let a_0, \ldots, a_n be variables and * be the symbol of a binary operation. Prove that c_n is equal to the number of ways to put brackets correctly in the expression $a_0 * a_1 * \cdots * a_n$.

For example, for n = 2 there are three terms $a_0 * a_1 * a_2$ and $c_2 = 2$ ways to put brackets: $(a_0 * a_1) * a_2$ and $a_0 * (a_1 * a_2)$. Note that Exercise 3 is not the same as Exercise 1!