LECTURE 4.

Abstract. Lattice paths and Catalan numbers.

Consider a rectangle $m \times n$ tiled by squares 1×1; boundaries of squares form a lattice. A peg standing in the lower left corner is moving to the upper right corner; only moves "up" and "right" are allowed. The motion of the peg is called a lattice path; its total length is $m+n$ moves.

Theorem 1. There are $\binom{m+n}{m}=\binom{m+n}{n}$ different lattice paths.
Proof. The lattice path is uniquely determined by telling which m of the moves are "up" (the remaining n are "right").

Let f be a lattice path. Denote by $a_{i}(f), 0 \leq i \leq m$, the length of the path segment on the i-th horizontal. One has $0 \leq a_{i}(f) \leq n$ for each i, and $a_{0}(f)+\cdots+a_{m}(f)=n$. Apparently, for any numbers x_{0}, \ldots, x_{m} with these properties there exists exactly one lattice path f such that $a_{i}(f)=x_{i}$ for all $i=1, \ldots, m$.

Corollary 1. The equation $x_{0}+\cdots+x_{m}=n$ has $\binom{m+n}{m}$ nonnegative integer solutions.
The solutions are called compositions of n containing $m+1$ parts.
For a lattice path f consider a sequence $0, \ldots, 0,1, \ldots, 1, \ldots, m, \ldots, m$ where each value i is repeated $a_{i}(f)$ times (if $a_{i}(f)=0$ then i is skipped). The sequence obtained $b_{1}(f), \ldots, b_{n}(f)$ contains n terms, is increasing (not strictly) and has the property $0 \leq b_{i}(f) \leq m$. Increasing sequences may be interpreted as multisets: a multiset is a finite sequence y_{1}, \ldots, y_{n} considered up to permutation of its terms. Thus $\{\{1,1,2\}\}$ and $\{\{1,2,1\}\}$ are the same multiset but $\{\{1,1,2\}\}$ and $\{\{1,2,2\}\}$ are not the same. Elements of a multiset can be uniquely arranged to form an increasing sequence.

Corollary 2. The total number of multisets of n elements x such that $0 \leq x \leq m$ is equal to $\binom{m+n}{m}$.
Take now $m=n$. The lattice path in the square $n \times n$ is called a Dyck path if it lies above (or on) the diagonal joining lower left corner with the upper right corner. The number of Dyck paths is called the n-th Catalan number and denoted (usually) by c_{n}. It is convenient to take $c_{0}=1$ by definition.
Theorem 2. The Catalan numbers satisfy the identity $c_{n}=\sum_{k=1}^{n} c_{k-1} c_{n-k}$ for any $n=1,2, \ldots$.
Proof. A Dyck path f starts on the diagonal at the point $(0,0)$; let k be the smallest positive integer such that the point (k, k) lies on the path f (one has $1 \leq k \leq n$). Count the number of Dyck paths f with a fixed k.

The segment of the path f between the points $(0,0)$ and (k, k) starts with a vertical move and finishes by a horizontal one. Between these moves there lies a Dyck path of $2(k-1)$ moves, shifted one position up. The number of such paths is $c_{k-1}\left(c_{0}=1\right.$ by definition). The segment between the points (k, k) and (n, n) is a Dyck path of $2(n-k)$ moves; there are c_{n-k} of them. Thus a total number of Dyck path with a fixed k is $c_{k-1} c_{n-k}$.

Theorem 3. One has $C \stackrel{\text { def }}{=} \sum_{n=0}^{\infty} c_{n} t^{n}=\frac{1-\sqrt{1-4 t}}{2 t}$.
Proof. Multiply the identity from Theorem 2 by t^{n} and sum it over all $n=1,2, \ldots$. Since $c_{0}=1$, one has

$$
\begin{aligned}
C-1 & =\sum_{n=1}^{\infty} c_{n} t^{n}=\sum_{n=1}^{\infty} \sum_{k=1}^{n} c_{k-1} c_{n-k} t^{n}=t \sum_{n=1}^{\infty} \sum_{k=1}^{n} c_{k-1} t^{k-1} \cdot c_{n-k} t^{n-k} \\
& \text { changing variables } p \stackrel{\text { def }}{=} k-1 \text { and } q \stackrel{\text { def }}{=} n-k \\
& =t\left(\sum_{p=0}^{\infty} c_{p} t^{p}\right) \cdot\left(\sum_{q=0}^{\infty} c_{q} t^{q}\right)=t C^{2} .
\end{aligned}
$$

The quadratic equation obtained has two solutions: $C=(1+\sqrt{1-4 t}) /(2 t)$ and $C=(1-\sqrt{1-4 t}) /(2 t)$, but only the second one is equal to 1 at $t=0$.

Corollary 3. $c_{n}=\frac{1}{n+1}\binom{2 n}{n}=\frac{(2 n)!}{n!(n+1)!}$.

Proof. By Newton's binomial formula for the exponent $1 / 2$ one has

$$
\begin{aligned}
\sqrt{1-4 t} & =1+\sum_{n=1}^{\infty}(-1)^{n}\binom{1 / 2}{n} 4^{n} t^{n}=1+\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n!} \frac{1}{2} \cdot\left(-\frac{1}{2}\right) \cdot\left(-\frac{3}{2}\right) \cdots \cdot\left(-\frac{2 n-3}{2}\right) 4^{n} t^{n} \\
& =1+\sum_{n=1}^{\infty}(-1)^{2 n-1} \frac{1 \cdot 3 \cdots \cdot(2 n-3)}{2^{n} n!} 4^{n} t^{n}=1-\sum_{n=1}^{\infty} \frac{(2 n-2)!}{2^{2 n-1}(n-1)!n!} 2^{2 n} t^{n}
\end{aligned}
$$

hence, $(1-\sqrt{1-4 t}) /(2 t)=\sum_{n=1}^{\infty} \frac{(2 n-2)!}{n!(n-1)!} t^{n-1}$. Changing the summation variable $n \mapsto n+1$ one obtains the required formula.

Exercises

Exercise 1. Prove that c_{n} is equal to the number of balanced bracket structures containing n pairs of brackets.
For example, for one pair or brackets the only structure is (); for two pairs there are two: () () and (()), etc.
Exercise 2. Prove that c_{n} is equal to the number of triangulations of a convex $(n+2)$-gon by diagonals. Triangulation is a splitting of the polygon into triangles; some of the triangles may have common sides and/or vertices, but have otherwise no intersections. The vertices of the polygon are numbered $1,2, \ldots,(n+2)$ counterclockwise.

For example, a square with the vertices $1,2,3,4$ has $c_{2}=2$ triangulations: draw either a diagonal 1,3 or a diagonal 2,4 . For a pentagon there are $c_{3}=5$ triangulations; if the pentagon is regular they are mapped one to the other by rotations.

Exercise 3. Let a_{0}, \ldots, a_{n} be variables and $*$ be the symbol of a binary operation. Prove that c_{n} is equal to the number of ways to put brackets correctly in the expression $a_{0} * a_{1} * \cdots * a_{n}$.

For example, for $n=2$ there are three terms $a_{0} * a_{1} * a_{2}$ and $c_{2}=2$ ways to put brackets: $\left(a_{0} * a_{1}\right) * a_{2}$ and $a_{0} *\left(a_{1} * a_{2}\right)$. Note that Exercise 3 is not the same as Exercise 1!

