
HSE, FALL 2018 COMBINATORICS

LECTURE 4.

Abstract. Lattice paths and Catalan numbers.

Consider a rectangle m× n tiled by squares 1× 1; boundaries of squares form a lattice. A peg standing in the
lower left corner is moving to the upper right corner; only moves \up" and \right" are allowed. The motion of the
peg is called a lattice path; its total length is m+ n moves.

Theorem 1. There are
(m+n
m

)
=

(m+n
n

)
di�erent lattice paths.

Proof. The lattice path is uniquely determined by telling which m of the moves are \up" (the remaining n are
"right"). ¤

Let f be a lattice path. Denote by ai(f), 0 ≤ i ≤ m, the length of the path segment on the i-th horizontal. One
has 0 ≤ ai(f) ≤ n for each i, and a0(f) + · · · + am(f) = n. Apparently, for any numbers x0; : : : ; xm with these
properties there exists exactly one lattice path f such that ai(f) = xi for all i = 1; : : : ;m.

Corollary 1. The equation x0 + · · ·+ xm = n has
(m+n
m

)
nonnegative integer solutions.

The solutions are called compositions of n containing m+ 1 parts.
For a lattice path f consider a sequence 0; : : : ; 0; 1; : : : ; 1; : : : ;m; : : : ;m where each value i is repeated ai(f)

times (if ai(f) = 0 then i is skipped). The sequence obtained b1(f); : : : ; bn(f) contains n terms, is increasing (not
strictly) and has the property 0 ≤ bi(f) ≤ m. Increasing sequences may be interpreted as multisets: a multiset is a
�nite sequence y1; : : : ; yn considered up to permutation of its terms. Thus {{1; 1; 2}} and {{1; 2; 1}} are the same
multiset but {{1; 1; 2}} and {{1; 2; 2}} are not the same. Elements of a multiset can be uniquely arranged to form
an increasing sequence.

Corollary 2. The total number of multisets of n elements x such that 0 ≤ x ≤ m is equal to
(m+n
m

)
.

Take now m = n. The lattice path in the square n× n is called a Dyck path if it lies above (or on) the diagonal
joining lower left corner with the upper right corner. The number of Dyck paths is called the n-th Catalan number
and denoted (usually) by cn. It is convenient to take c0 = 1 by de�nition.

Theorem 2. The Catalan numbers satisfy the identity cn = ∑n
k=1 ck−1cn−k for any n = 1; 2; : : : .

Proof. A Dyck path f starts on the diagonal at the point (0; 0); let k be the smallest positive integer such that the
point (k; k) lies on the path f (one has 1 ≤ k ≤ n). Count the number of Dyck paths f with a �xed k.

The segment of the path f between the points (0; 0) and (k; k) starts with a vertical move and �nishes by a
horizontal one. Between these moves there lies a Dyck path of 2(k−1) moves, shifted one position up. The number
of such paths is ck−1 (c0 = 1 by de�nition). The segment between the points (k; k) and (n; n) is a Dyck path of
2(n− k) moves; there are cn−k of them. Thus a total number of Dyck path with a �xed k is ck−1cn−k. ¤

Theorem 3. One has C def= ∑∞
n=0 cntn = 1−√1−4t

2t .

Proof. Multiply the identity from Theorem 2 by tn and sum it over all n = 1; 2; : : : . Since c0 = 1, one has

C − 1 =
∞∑
n=1

cntn =
∞∑
n=1

n∑

k=1
ck−1cn−ktn = t

∞∑
n=1

n∑

k=1
ck−1tk−1 · cn−ktn−k

changing variables p def= k − 1 and q def= n− k

= t
( ∞∑
p=0

cptp
) · (

∞∑
q=0

cqtq
)

= tC2:

The quadratic equation obtained has two solutions: C = (1 +
√

1− 4t)=(2t) and C = (1−√1− 4t)=(2t), but only
the second one is equal to 1 at t = 0. ¤

Corollary 3. cn = 1
n+1

(2n
n

)
= (2n)!

n!(n+1)! .
1



Proof. By Newton's binomial formula for the exponent 1=2 one has
√

1− 4t = 1 +
∞∑
n=1

(−1)n
(1=2
n

)
4ntn = 1 +

∞∑
n=1

(−1)n 1
n!

1
2 ·

(
−1

2

)
·
(
−3

2

)
· · · · ·

(
−2n− 3

2

)
4ntn

= 1 +
∞∑
n=1

(−1)2n−1 1 · 3 · · · · · (2n− 3)
2nn! 4ntn = 1−

∞∑
n=1

(2n− 2)!
22n−1(n− 1)!n! 2

2ntn;

hence, (1 − √
1− 4t)=(2t) = ∑∞

n=1
(2n−2)!
n!(n−1)! tn−1. Changing the summation variable n 7→ n + 1 one obtains the

required formula. ¤

Exercises
Exercise 1. Prove that cn is equal to the number of balanced bracket structures containing n pairs of brackets.

For example, for one pair or brackets the only structure is (); for two pairs there are two: ()() and (()), etc.
Exercise 2. Prove that cn is equal to the number of triangulations of a convex (n+ 2)-gon by diagonals. Trian-
gulation is a splitting of the polygon into triangles; some of the triangles may have common sides and/or vertices,
but have otherwise no intersections. The vertices of the polygon are numbered 1; 2; : : : ; (n+ 2) counterclockwise.

For example, a square with the vertices 1, 2, 3, 4 has c2 = 2 triangulations: draw either a diagonal 1; 3 or a
diagonal 2; 4. For a pentagon there are c3 = 5 triangulations; if the pentagon is regular they are mapped one to
the other by rotations.
Exercise 3. Let a0; : : : ; an be variables and ∗ be the symbol of a binary operation. Prove that cn is equal to the
number of ways to put brackets correctly in the expression a0 ∗ a1 ∗ · · · ∗ an.

For example, for n = 2 there are three terms a0 ∗ a1 ∗ a2 and c2 = 2 ways to put brackets: (a0 ∗ a1) ∗ a2 and
a0 ∗ (a1 ∗ a2). Note that Exercise 3 is not the same as Exercise 1!


