LECTURE 3.

Abstract. Linear recursion II: explicit formulas.

Recall that a number λ is called a root of the polynomial P of multiplicity m if $P(\lambda)=P^{\prime}(\lambda)=\cdots=$ $P^{(m-1)}(\lambda)=0$ and $P^{(m)}(\lambda) \neq 0$. A root of multiplicity 1 is called simple.

Theorem 1. A sequence x_{0}, x_{1}, \ldots satisfies a linear recursion

$$
\begin{equation*}
x_{n+k}=a_{0} x_{n}+a_{1} x_{n+1}+\cdots+a_{k-1} x_{n+k-1} \tag{1}
\end{equation*}
$$

if and only if $x_{n}=Q_{1}(n) \lambda_{1}^{n}+\cdots+Q_{s}(n) \lambda_{s}^{n}$. Here $\lambda_{1}, \ldots, \lambda_{s}$ are pairwise distinct roots of the polynomial $\chi(t)=t^{k}-a_{k-1} t^{k-1}-\cdots-a_{0}, Q_{1}, \ldots, Q_{s}$ are polynomials, and the degree of any polynomial Q_{i} does not exceed $m_{i}-1$ where m_{i} is the multiplicity of $\lambda_{i}(i=1, \ldots, s)$.

Proof of the "if" part. Suppose λ to be a root of $\chi(t)=t^{k}-a_{k-1} t^{k-1}-\cdots-a_{0}$ of multiplicity m. By linearity (Theorem 1 of Lecture 2) it suffices to prove that the sequence $x_{n}=n^{s} \lambda^{n}$, where $0 \leq s \leq m-1$, satisfies (1).

Denote by D the linear operator $D=t \frac{d}{d t}$, so if $C=\sum_{n=0}^{\infty} c_{n} t^{n}$ is a power series then $D C=\sum_{n=0}^{\infty} n c_{n} t^{n}$. An easy induction shows that $D^{k}=\sum_{m=1}^{k} c_{k m} t^{m} \frac{d^{m}}{d t^{m}}$ for some constants $c_{k m}-$ so, by definition of the multiplicity, $\left(D^{k} \chi\right)(\lambda)=0$ for any $0 \leq k \leq m-1$. Then,

$$
\begin{aligned}
& x_{n+k}-a_{k-1} x_{n+k-1}-\cdots-a_{0} x_{n}=(n+k)^{s} \lambda^{n+k}-a_{k-1}(n+k-1)^{s} \lambda^{n+k-1}-\cdots-a_{0} n^{s} \lambda^{n} \\
& =\lambda^{n} \times\left(n^{s}\left(\lambda^{k}-a_{k-1} \lambda^{k-1}-\cdots-a_{0}\right)+n^{s-1}\binom{s}{1}\left(k \lambda^{k}-(k-1) a_{k-1} \lambda^{k-1}-\cdots-1 \cdot a_{1} \lambda-0 \cdot a_{0}\right)\right. \\
& \left.\quad-\cdots-n^{0}\binom{s}{s}\left(k^{s} \lambda^{k}-(k-1)^{s} a_{k-1} \lambda^{k}-\cdots-1^{s} \cdot a_{1} \lambda-0^{s} \cdot a_{0}\right)\right) \\
& =\lambda^{n}\left(n^{s} \chi(\lambda)+\binom{s}{1} n^{s-1}(D \chi)(\lambda)+\cdots+\binom{s}{s} n^{0}\left(D^{s} \chi\right)(\lambda)\right)=0
\end{aligned}
$$

To prove the "only if" part of the theorem we will need three lemmas:
Lemma 1. For all power series A and B one has $\frac{d^{n}}{d t^{n}}(A B)=\sum_{k=0}^{n}\binom{n}{k} \frac{d^{k} A}{d t^{k}} \cdot \frac{d^{n-k} B}{d t^{n-k}}$.
Proof. Easy induction similar to the proof of the binomial formula.
Lemma 2 (generalized Bezout theorem). λ is a root of multiplicity m of the polynomial P if and only if $P(t)=$ $(t-\lambda)^{m} Q(t)$ where $Q(\lambda) \neq 0$.
Proof. Divide $P(t)$ by $(t-\lambda)$ with a residue: $P(t)=(t-\lambda) P_{1}(t)+a$. The degree of the residue a is 0 , that is, a is a constant. Substituting $t=\lambda$ gives $a=P(\lambda)$. Thus, P is divisible by $(t-\lambda)$ if and only if $P(\lambda)=0$. (This statement is the classical Bezout theorem.)

Proceed by induction by m. Suppose the lemma is proved for multiplicities smaller than m, and λ is a root of P of the multuplicity m. Hence $P(t)=(t-\lambda)^{m-1} P_{1}(t)$. Taking derivative one obtains $P^{\prime}(t)=(m-1)(t-$ $\lambda)^{m-2} P_{1}(t)+(t-\lambda)^{m-1} P_{1}^{\prime}(t)$. By the definition λ is a root of multiplicity $m-1$ of P^{\prime}, so by the induction hypothesis $P^{\prime}(t)=(t-\lambda)^{m-1} P_{2}(t)$ for some P_{2}, and therefore $P_{1}(t)$ is divisible by $(t-\lambda): P(t)=(t-\lambda) Q(t)$. So, $P(t)=(t-\lambda)^{m} Q(t)$. By Lemma 1 one has $P^{(m)}(\lambda)=m!Q(\lambda) \neq 0$, hence $Q(\lambda) \neq 0$.

The other way round, let $P(t)=(t-\lambda)^{m} Q(t)$ where $Q(\lambda) \neq 0$. Lemma 1 implies that $P^{(s)}(\lambda)=0$ for any $0 \leq s \leq m-1$, and $P^{(m)}(\lambda)=m!Q(\lambda) \neq 0$, so λ is a root of multiplicity m.

Lemma 3. If $\lambda_{1}, \ldots, \lambda_{s}$ be pairwise distinct numbers and m_{1}, \ldots, m_{s} are positive integers. Then for any constants $u_{0}^{(1)}, \ldots, u_{m_{1}-1}^{(1)}, \ldots, u_{0}^{(s)}, \ldots, u_{m_{s}-1}^{(s)}$ there exists a unique polynomial Q of degree less than $m_{1}+\cdots+m_{s}$ such that $Q^{(j)}\left(\lambda_{k}\right)=u_{k}^{(j)}$ for all k and j.
Proof. Uniqueness: let Q_{1}, Q_{2} be two polynomials satisfying the conditions of the lemma. Then $Q \stackrel{\text { def }}{=} Q_{1}-Q_{2}$ is a polynomial with $Q^{(j)}\left(\lambda_{k}\right)=0$ for any $k=1, \ldots, s$ and any $j=1, \ldots, m_{k}$. It means that for all $k=1, \ldots, s$ the number λ_{k} is a root of Q of multiplicity m_{k} or more. By Lemma 2 the polynomial $Q(t)$ is divisible by $\left(t-\lambda_{1}\right)^{m_{1}} \ldots\left(t-\lambda_{s}\right)^{m_{s}}$. Once the degree of Q is less than that of $\left(t-\lambda_{1}\right)^{m_{1}} \ldots\left(t-\lambda_{s}\right)^{m_{s}}$, it means that $Q=0$.

Existence: see Exercise 2.

Lemma 4. Let A and B be polynomials, and $\lambda_{1}, \ldots, \lambda_{s}$ are the pairwise distinct roots of A of multiplicities m_{1}, \ldots, m_{s}. Then there exists unique polynomials $P_{0}, P_{1}, \ldots, P_{s}$ such that $\frac{B(t)}{A(t)}=P_{0}(t)+\frac{P_{1}(t)}{\left(t-\lambda_{1}\right)^{m_{1}}}+\cdots+\frac{P_{s}(t)}{\left(t-\lambda_{s}\right)^{m_{s}}}$ and the degree of every $P_{i}, 1 \leq i \leq s$, is less or equal to $m_{i}-1$.

Proof. First, divide B by A : $B(t)=P_{0}(t) A(t)+R(t)$, where R is the residue: $\operatorname{deg} R<\operatorname{deg} A$. So, the lemma is reduced to the case when $\operatorname{deg} B<\operatorname{deg} A$ (and $P_{0}=0$).

By the principal theorem of algebra and Lemma 2 one has $A(t)=C\left(t-\lambda_{1}\right)^{m_{1}} \ldots\left(t-\lambda_{s}\right)^{m_{s}}$ for some $C=$ const. $\neq 0$. Thus the statement of the lemma is equivalent to $B(t) / C=P_{1}(t) R_{1}(t)+\cdots+P_{s}(t) R_{s}(t)$ where $R_{k}(t) \stackrel{\text { def }}{=}\left(t-\lambda_{1}\right)^{m_{1}}+\cdots+\left(t \widehat{\left.-\lambda_{k}\right)^{m}}{ }^{m_{k}}+\cdots+\left(t-\lambda_{s}\right)^{m_{s}}, k=1, \ldots, s\right.$.

By Lemma 2 one has $R_{k}^{(p)}\left(\lambda_{q}\right)=0$ if $q \neq k$ and $0 \leq p \leq m_{q}$. By Lemma 1 if $k<m_{i}$ then one has $B^{(k)}\left(\lambda_{i}\right)=$ $P_{i}^{(k)}\left(\lambda_{i}\right) \cdot\left(\lambda_{i}-\lambda_{1}\right)^{m_{1}} \ldots\left(\lambda_{i}-\lambda_{s}\right)^{m_{s}}+\ldots$ where the dots stand for a linear combination of $P_{i}^{(\ell)}\left(\lambda_{i}\right)$ with $\ell<k$. So, by induction, we see that the values of $P_{i}\left(\lambda_{i}\right), P^{\prime}\left(\lambda_{i}\right), \ldots, P^{\left(m_{i}-1\right)}\left(\lambda_{i}\right)$ are uniquely defined. By Taylor's formula these conditions define uniquely a polynomial P_{i} of degree $m_{i}-1$ or less.

Proof of the "only if" part. Take $X=\sum_{n=0}^{\infty} x_{n} t^{n}$; by Theorem 2 of Lecture 2 and Lemma 4 one has $X=$ $B(t) / A(t)=P_{0}(t)+\frac{P_{1}(t)}{\left(t-\mu_{1}\right)^{m_{1}}}+\cdots+\frac{P_{s}(t)}{\left(t-\mu_{s}\right)^{m_{s}}}$. It is easy to see that all $\mu_{i} \neq 0$. By the binomial formula $(t-\mu)^{-m}=\sum_{n=0}^{\infty} \mu^{-m-n} \frac{m(m-1) \ldots(m-n+1)}{n!} t^{n}=\lambda^{m} \sum_{n-0}^{\infty} \lambda^{n} Q(n) t^{n}$ where $\lambda=1 / \mu$ and Q is a polynomial of degree m. The same is true for the fraction $\frac{t^{k}}{(t-\mu)^{m}}$ with any k, and therefore for a fraction $\frac{P(t)}{(t-\mu)^{m}}$ with any polynomial P. So, x_{n} is like in the theorem.

Exercises

Exercise 1. Find a direct formula for the constants $c_{k m}$ in the equality $\left(t \frac{d}{d t}\right)^{k}=\sum_{m=0}^{k} c_{k m} t^{m} \frac{d^{m}}{d t^{m}}$.
Hint. One has $\frac{d}{d t} t=t \frac{d}{d t}+1$ by the chain rule. Then one has, for example, $\left(t \frac{d}{d t}\right)^{2}=t\left(t \frac{d}{d t}+1\right) \frac{d}{d t}=t^{2} \frac{d^{2}}{d t^{2}}+t \frac{d}{d t}$, so that $c_{22}=c_{21}=1$.

Exercise 2. a) Let $\lambda_{1}, \ldots, \lambda_{n+1} \in \mathbb{C}$ be pairwise distinct numbers. Find a polynomial Q of degree n such that $Q\left(\lambda_{1}\right)=1, Q\left(\lambda_{2}\right)=\cdots=Q\left(\lambda_{n+1}\right)=0$. b) Let $u_{1}, \ldots, u_{n+1} \in \mathbb{C}$ be any constants. Find a polynomial of degree n or less such that $Q\left(\lambda_{1}\right)=u_{1}, \ldots, Q\left(\lambda_{n+1}\right)=u_{n+1}$. c) Find a polynomial Q_{1} of degree n such that $Q\left(\lambda_{1}\right)=\cdots=Q\left(\lambda_{n}\right)=0$ (note the last subscript!) and $Q^{\prime}\left(\lambda_{1}\right)=1$. d) Find a polynomial R of degree n such that $R\left(\lambda_{2}\right)=\cdots=R\left(\lambda_{n}\right)=0$ (note the first and the last subscripts!) and $R\left(\lambda_{1}\right)=1$. Then find a polynomial Q of degree n or less satisfying the same equalities and additionally such that $Q^{\prime}\left(\lambda_{1}\right)=0$. e) Let $u_{1}^{(0)}, u_{1}^{(1)}, u_{2}, \ldots, u_{n}$ be any constants. Prove that there exists a polynomial Q of degree n or less such that $Q(\lambda)=u_{1}^{(0)}, Q^{\prime}\left(\lambda_{1}\right)=u_{1}^{(1)}$, $Q\left(\lambda_{k}\right)=u_{k}$ for all $k=2, \ldots, n$. f) Prove existence in Lemma 3.

Exercise 3. Let $X(t) \stackrel{\text { def }}{=} x_{0}+x_{1} t+x_{2} t^{2}+\ldots$ (a generating function) where the sequence x_{n} satisfies: a) $x_{x+2}=$ $5 x_{n+1}-6 x_{n}, x_{0}=2, x_{1}=1$; b) $x_{n+2}=2 x_{n+1}-x_{n}, x_{0}=1, x_{1}=3$. Find $X(t)$ as a rational function $A(t) / B(t)$, represent it as a sum of elementary fractions, and develop it into power series to obtain an explicit formula for the sequence x_{n}.

Exercise 4. How many sequences a_{1}, \ldots, a_{n} of zeros and ones do not contain three ones in a row?
Exercise 5. a) Prove that the series $f(t)=\sum_{n=0}^{\infty} n!t^{n}$ diverges for any $t \neq 0$. b) Prove that f satisfies the differential equation $t^{2} f^{\prime}+(t-1) f+1=0$. $\left.c^{*}\right)$ Find all the power series satisfying this equation. Is there a power series satisfying this equation and convergent for some $t \neq 0$?

