HSE, FALL 2018 COMBINATORICS

LECTURE 3.

ABSTRACT. Linear recursion II: explicit formulas.

Recall that a number A is called a root of the polynomial P of multiplicity m if P(A) = P'(A) = --- =
Pm=1(X) =0 and P™(X) # 0. A root of multiplicity 1 is called simple.

Theorem 1. A sequence xg,x1,... satisfies a linear recursion
(1) Lotk = Q0%n + QU Tpp1 + -+ Q1 Tpyp—1

if and only if x, = Q1(M)A} + -+ + Qs(n)A?. Here \i,...,\s are pairwise distinct roots of the polynomial
x#) =tF —ap_t" "1 — o —ag, Q1,...,Q, are polynomials, and the degree of any polynomial Q; does not exceed
m; — 1 where my; is the multiplicity of \; (i=1,...,s).

Proof of the “if” part. Suppose A to be a root of x(t) = t* — ap_1t*~1 — .- — ag of multiplicity m. By linearity

(Theorem 1 of Lecture 2) it suffices to prove that the sequence x, = n*A", where 0 < s < m — 1, satisfies (1).
Denote by D the linear operator D =t so if C =307 cat™ is a power series then DC = Y0 nc,t". An
easy induction shows that D* = an:l Chmt™

(D*x)(X) = 0 for any 0 < k < m — 1. Then,

dtm for some constants cg,, — so, by definition of the multiplicity,

Tk —Ok—1Tntk—1 —  *° — GoZyp = (N + kz)s)\’”k arp—1(n+k— 1)5/\’”’“_1 — - —agn® A"
=" x (ns()\k —ap N - —ag) + 0 <8) (kX — (k= Dag_ N7t — . —1-a1X = 0-ag)
) ( )(imk (k—1)ap_ A —- —1° -al)\—OS-ao))

=) + (§)re @00+ o+ (D)) =0

O
To prove the “only if” part of the theorem we will need three lemmas:
Lemma 1. For all power series A and B one has dTn( B) =%} )‘f;k . ‘f;;if
Proof. Easy induction similar to the proof of the binomial formula. O

Lemma 2 (generalized Bezout theorem). A is a root of multiplicity m of the polynomial P if and only if P(t) =
(t—A)"Q(t) where Q(A) # 0.

Proof. Divide P(t) by (t — A) with a residue: P(¢) = (t — A)P1(t) + a. The degree of the residue a is 0, that is, a
is a constant. Substituting ¢ = X gives a = P(\). Thus, P is divisible by (¢ — A) if and only if P(A) = 0. (This
statement is the classical Bezout theorem.)

Proceed by induction by m. Suppose the lemma is proved for multiplicities smaller than m, and A is a root
of P of the multuplicity m. Hence P(t) = (t — A\)™ 1P, (t). Taking derivative one obtains P’'(t) = (m — 1)(t —
AN7"72Py(t) + (t — \)™ LP/(t). By the definition X is a root of multiplicity m — 1 of P’, so by the induction
hypothesis P’(t) = (t — \)™ 1 P,(t) for some P», and therefore P;(t) is divisible by (¢t — A): P(t) = (t —A\)Q(t). So,
P(t) = (t — A)™Q(t). By Lemma 1 one has P(™)()) = m!Q(A) # 0, hence Q(\) # 0.

The other way round, let P(t) = (t — A)"Q(t) where Q(\) # 0. Lemma 1 implies that P()()\) = 0 for any

0<s<m—1,and P™(X) = m!Q(\) # 0, so X is a root of multiplicity m. O
Lemma 3. If A\, ..., s be pairwise distinct numbers and mq, ..., ms are positive integers. Then for any constants
u(()l), . ,u%ifl, .. ugs), ey 52) 1 there exists a unique polynomial Q) of degree less than mq1 + - - -+ ms such that

QUI(N\) = uEJ) for all k and j.

Proof. Uniqueness: let Q1,Q> be two polynomials satisfying the conditions of the lemma. Then @ def Q1 — Q2
is a polynomial with Q) (\;) = 0 for any k =1,...,s and any j = 1,...,my. It means that forall k = 1,...,s
the number A; is a root of @ of multiplicity my or more. By Lemma 2 the polynomial Q(t) is divisible by
(t—A1)™ ... (t — As)™=. Once the degree of @) is less than that of (t — A;)™ ... (t — As)™=, it means that @ = 0.
Existence: see Exercise 2. 0
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Lemma 4. Let A and B be polynomials, and \y,..., s are the pairwise distinct roots of A of multiplicities
mi,...,ms. Then there exists unique polynomials Py, Py, ..., P; such that AEE; = Py(t) + @ P;\(t))ml +- 4 %

and the degree of every P;, 1 <1i < s, is less or equal to m; — 1.
Proof. First, divide B by A: B(t) = Py(t)A(t) + R(t), where R is the residue: deg R < deg A. So, the lemma is
reduced to the case when deg B < deg A (and Py = 0).

By the principal theorem of algebra and Lemma 2 one has A(t) = C(t — A1)™ ... (t — As)™= for some C =
const. # 0. Thus the statement of the lemma is equivalent to B(t)/C = Pi(t)R1(t) + --- + Ps(¢t)Rs(t) where

Ry(t) S (1= A)™ o (E= M) ™o (=A™ k=1,

By Lemma 2 one has Rgcp) (Aq) =01if ¢ # k and 0 < p < my. By Lemma 1 if ¥ < m; then one has B®I()\) =
Pi(k)(/\i) (A= A1)™ Lo (A — As)™e +. .. where the dots stand for a linear combination of Pi(f)(/\i) with £ < k. So,
by induction, we see that the values of P;()\;), P’ (A;),..., P(mi=1()\;) are uniquely defined. By Taylor’s formula
these conditions define uniquely a polynomial P; of degree m; — 1 or less. 0
Proof of the “only if” part. Take X = Y °  x,t"; by Theorem 2 of Lecture 2 and Lemma 4 one has X =
B(t)/A(t) = Py(t) + N (tpi It is easy to see that all p; # 0. By the binomial formula

(t—p1)™1 — )T
(t—p)™ =2 ™ nm(m=1). n,(m niln — \m S0 o A"Q(n)t" where A = 1/p and @ is a polynomial of
degree m. The same is true for the fraction ﬁ with any k, and therefore for a fraction (tfif))m with any
polynomial P. So, z,, is like in the theorem. O
EXERCISES

Exercise 1. Find a direct formula for the constants cg,, in the equality (t%)’c = anzo ckmtmc‘lj%.

Hint. One has £t = t4 + 1 by the chain rule. Then one has, for example, (t4)? = ¢(td + 1)L = ¢2 dg +td . so
that Coo = Ca1 = 1

Exercise 2. a) Let Ay,...,A\y11 € C be pairwise distinct numbers. Find a polynomial @ of degree n such that
QA) =1, Q(A2) = -+ = @(Ap41) = 0. b) Let uy,...,upt1 € C be any constants. Find a polynomial of
degree n or less such that Q(\) = u1,...,Q(A41) = tnt1. ¢) Find a polynomial @)y of degree n such that
QA1) = =Q(\,) =0 (note the last subscript!) and Q’(A;) = 1. d) Find a polynomial R of degree n such that
R(X2) = -+ = R(\,) = 0 (note the first and the last subscripts!) and R(A;) = 1. Then find a polynomial @ of
degree n or less satisfying the same equalities and additionally such that @Q’(A;) = 0. e) Let ug ),ugl),uQ, e, Un
be any constants. Prove that there exists a polynomial () of degree n or less such that Q(\) = U1 , Q' (A1) = ugl),
Q(Ar) = uy for all k =2,...,n. f) Prove existence in Lemma 3.

Exercise 3. Let X (¢) L o+ 2t + 22t + . .. (a generating function) where the sequence x,, satisfies: a) x 4o =

5Zpt1 — 6Zn, To = 2,21 = 1; b) Tpyo = 2Tpy1 — Tp, To = 1,21 = 3. Find X (¢) as a rational function A(t)/B(t),
represent it as a sum of elementary fractions, and develop it into power series to obtain an explicit formula for the
sequence .

Exercise 4. How many sequences aq,...,a, of zeros and ones do not contain three ones in a row?

Exercise 5. a) Prove that the series f(t) = Y .~ nlt" diverges for any ¢ # 0. b) Prove that f satisfies the
differential equation t> '+ (t—1)f+1 = 0. c*) Find all the power series satisfying this equation. Is there a power
series satisfying this equation and convergent for some ¢ # 07



