
HSE, FALL 2018 COMBINATORICS

LECTURE 3.

Abstract. Linear recursion II: explicit formulas.

Recall that a number � is called a root of the polynomial P of multiplicity m if P (�) = P ′(�) = · · · =
P (m−1)(�) = 0 and P (m)(�) 6= 0. A root of multiplicity 1 is called simple.
Theorem 1. A sequence x0; x1; : : : satis�es a linear recursion
(1) xn+k = a0xn + a1xn+1 + · · ·+ ak−1xn+k−1

if and only if xn = Q1(n)�n1 + · · · + Qs(n)�ns . Here �1; : : : ; �s are pairwise distinct roots of the polynomial
�(t) = tk − ak−1tk−1 − · · · − a0, Q1; : : : ; Qs are polynomials, and the degree of any polynomial Qi does not exceed
mi − 1 where mi is the multiplicity of �i (i = 1; : : : ; s).
Proof of the \if" part. Suppose � to be a root of �(t) = tk − ak−1tk−1 − · · · − a0 of multiplicity m. By linearity
(Theorem 1 of Lecture 2) it su�ces to prove that the sequence xn = ns�n, where 0 ≤ s ≤ m− 1, satis�es (1).

Denote by D the linear operator D = t ddt , so if C = ∑∞
n=0 cntn is a power series then DC = ∑∞

n=0 ncntn. An
easy induction shows that Dk = ∑k

m=1 ckmtm dm
dtm for some constants ckm | so, by de�nition of the multiplicity,

(Dk�)(�) = 0 for any 0 ≤ k ≤ m− 1. Then,
xn+k−ak−1xn+k−1 − · · · − a0xn = (n+ k)s�n+k − ak−1(n+ k − 1)s�n+k−1 − · · · − a0ns�n

= �n ×
(
ns(�k − ak−1�k−1 − · · · − a0) + ns−1

(s
1

)
(k�k − (k − 1)ak−1�k−1 − · · · − 1 · a1�− 0 · a0)

− · · · − n0
(s
s

)
(ks�k − (k − 1)sak−1�k − · · · − 1s · a1�− 0s · a0)

)

= �n(ns�(�) +
(s

1

)
ns−1(D�)(�) + · · ·+

(s
s

)
n0(Ds�)(�)) = 0

¤
To prove the \only if" part of the theorem we will need three lemmas:

Lemma 1. For all power series A and B one has dn
dtn (AB) = ∑n

k=0
(n
k
)dkA
dtk · d

n−kB
dtn−k .

Proof. Easy induction similar to the proof of the binomial formula. ¤
Lemma 2 (generalized Bezout theorem). � is a root of multiplicity m of the polynomial P if and only if P (t) =
(t− �)mQ(t) where Q(�) 6= 0.
Proof. Divide P (t) by (t− �) with a residue: P (t) = (t− �)P1(t) + a. The degree of the residue a is 0, that is, a
is a constant. Substituting t = � gives a = P (�). Thus, P is divisible by (t − �) if and only if P (�) = 0. (This
statement is the classical Bezout theorem.)

Proceed by induction by m. Suppose the lemma is proved for multiplicities smaller than m, and � is a root
of P of the multuplicity m. Hence P (t) = (t − �)m−1P1(t). Taking derivative one obtains P ′(t) = (m − 1)(t −
�)m−2P1(t) + (t − �)m−1P ′1(t). By the de�nition � is a root of multiplicity m − 1 of P ′, so by the induction
hypothesis P ′(t) = (t−�)m−1P2(t) for some P2, and therefore P1(t) is divisible by (t−�): P (t) = (t−�)Q(t). So,
P (t) = (t− �)mQ(t). By Lemma 1 one has P (m)(�) = m!Q(�) 6= 0, hence Q(�) 6= 0.

The other way round, let P (t) = (t − �)mQ(t) where Q(�) 6= 0. Lemma 1 implies that P (s)(�) = 0 for any
0 ≤ s ≤ m− 1, and P (m)(�) = m!Q(�) 6= 0, so � is a root of multiplicity m. ¤
Lemma 3. If �1; : : : ; �s be pairwise distinct numbers and m1; : : : ;ms are positive integers. Then for any constants
u(1)

0 ; : : : ; u(1)
m1−1; : : : ; u

(s)
0 ; : : : ; u(s)

ms−1 there exists a unique polynomial Q of degree less than m1 + · · ·+ms such that
Q(j)(�k) = u(j)

k for all k and j.

Proof. Uniqueness: let Q1; Q2 be two polynomials satisfying the conditions of the lemma. Then Q def= Q1 − Q2
is a polynomial with Q(j)(�k) = 0 for any k = 1; : : : ; s and any j = 1; : : : ;mk. It means that for all k = 1; : : : ; s
the number �k is a root of Q of multiplicity mk or more. By Lemma 2 the polynomial Q(t) is divisible by
(t− �1)m1 : : : (t− �s)ms . Once the degree of Q is less than that of (t− �1)m1 : : : (t− �s)ms , it means that Q = 0.

Existence: see Exercise 2. ¤
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Lemma 4. Let A and B be polynomials, and �1; : : : ; �s are the pairwise distinct roots of A of multiplicities
m1; : : : ;ms. Then there exists unique polynomials P0; P1; : : : ; Ps such that B(t)

A(t) = P0(t) + P1(t)
(t−�1)m1 + · · ·+ Ps(t)

(t−�s)ms
and the degree of every Pi, 1 ≤ i ≤ s, is less or equal to mi − 1.
Proof. First, divide B by A: B(t) = P0(t)A(t) + R(t), where R is the residue: degR < degA. So, the lemma is
reduced to the case when degB < degA (and P0 = 0).

By the principal theorem of algebra and Lemma 2 one has A(t) = C(t − �1)m1 : : : (t − �s)ms for some C =
const: 6= 0. Thus the statement of the lemma is equivalent to B(t)=C = P1(t)R1(t) + · · · + Ps(t)Rs(t) where
Rk(t) def= (t− �1)m1 + · · ·+ ̂(t− �k)mk + · · ·+ (t− �s)ms , k = 1; : : : ; s.

By Lemma 2 one has R(p)
k (�q) = 0 if q 6= k and 0 ≤ p ≤ mq. By Lemma 1 if k < mi then one has B(k)(�i) =

P (k)
i (�i) · (�i−�1)m1 : : : (�i−�s)ms + : : : where the dots stand for a linear combination of P (`)

i (�i) with ` < k. So,
by induction, we see that the values of Pi(�i); P ′(�i); : : : ; P (mi−1)(�i) are uniquely de�ned. By Taylor's formula
these conditions de�ne uniquely a polynomial Pi of degree mi − 1 or less. ¤
Proof of the \only if" part. Take X = ∑∞

n=0 xntn; by Theorem 2 of Lecture 2 and Lemma 4 one has X =
B(t)=A(t) = P0(t) + P1(t)

(t−�1)m1 + · · · + Ps(t)
(t−�s)ms . It is easy to see that all �i 6= 0. By the binomial formula

(t − �)−m = ∑∞
n=0 �−m−n

m(m−1):::(m−n+1)
n! tn = �m ∑∞

n−0 �nQ(n)tn where � = 1=� and Q is a polynomial of
degree m. The same is true for the fraction tk

(t−�)m with any k, and therefore for a fraction P (t)
(t−�)m with any

polynomial P . So, xn is like in the theorem. ¤

Exercises
Exercise 1. Find a direct formula for the constants ckm in the equality (t ddt )k = ∑k

m=0 ckmtm dm
dtm .

Hint. One has d
dt t = t ddt + 1 by the chain rule. Then one has, for example, (t ddt )2 = t(t ddt + 1) ddt = t2 d2

dt2 + t ddt , so
that c22 = c21 = 1.
Exercise 2. a) Let �1; : : : ; �n+1 ∈ C be pairwise distinct numbers. Find a polynomial Q of degree n such that
Q(�1) = 1, Q(�2) = · · · = Q(�n+1) = 0. b) Let u1; : : : ; un+1 ∈ C be any constants. Find a polynomial of
degree n or less such that Q(�1) = u1; : : : ; Q(�n+1) = un+1. c) Find a polynomial Q1 of degree n such that
Q(�1) = · · · = Q(�n) = 0 (note the last subscript!) and Q′(�1) = 1. d) Find a polynomial R of degree n such that
R(�2) = · · · = R(�n) = 0 (note the �rst and the last subscripts!) and R(�1) = 1. Then �nd a polynomial Q of
degree n or less satisfying the same equalities and additionally such that Q′(�1) = 0. e) Let u(0)

1 ; u(1)
1 ; u2; : : : ; un

be any constants. Prove that there exists a polynomial Q of degree n or less such that Q(�) = u(0)
1 , Q′(�1) = u(1)

1 ,
Q(�k) = uk for all k = 2; : : : ; n. f) Prove existence in Lemma 3.

Exercise 3. Let X(t) def= x0 + x1t+ x2t2 + : : : (a generating function) where the sequence xn satis�es: a) xx+2 =
5xn+1 − 6xn, x0 = 2; x1 = 1; b) xn+2 = 2xn+1 − xn, x0 = 1; x1 = 3. Find X(t) as a rational function A(t)=B(t),
represent it as a sum of elementary fractions, and develop it into power series to obtain an explicit formula for the
sequence xn.
Exercise 4. How many sequences a1; : : : ; an of zeros and ones do not contain three ones in a row?
Exercise 5. a) Prove that the series f(t) = ∑∞

n=0 n!tn diverges for any t 6= 0. b) Prove that f satis�es the
di�erential equation t2f ′+ (t−1)f +1 = 0. c*) Find all the power series satisfying this equation. Is there a power
series satisfying this equation and convergent for some t 6= 0?


