HSE, FALL 2018 COMBINATORICS

LECTURE 2.

ABSTRACT. Linear recursion I: generating functions.

Definition 1. A sequence © = (xg,Z1,%2,...) is said to satisfy a k-th order linear recursion with constant
coefficients ag, ...,a,_1 if for every n > 0 there is a relation z,,4r = @z, + a1Tpr1 + - + CGp—1Tntk—1-

Ezample 1. A sequence satisfying a first order recursion z,+1 = gz, (here ag = ¢q) is called a geometric progression.
Example 2. A Fibonacci sequence 0,1,1,2,3,5,... satisfies a second order recursion z,y» = x, + Zp41; here
ag = a1 = 1.

Ezample 3. A periodic sequence x = (xg,*1,-..,Tk—1,%0,%1,--.) with a period of length k satisfies a k-th order
recursion Z,4j = %,. Here ap = 1 and a1 = --- = ag_1 = 0. In particular, a constant sequence z,, = a satisfies a
first order recursion z,11 = x,. Here k = 1 and ay = 1.

Example 4. A sequence z,, = n of natural numbers satisfies the second order recursion 42 = 2Tp41 — ZTn.

Ezxample 5. If a sequence z satisfies a linear recursion x,, 1, = apx, + @1Zpy1 + -+ + Ag—1Zp4k—1 Of order k then

the sequence y defined as y, def ZTn—1 for n > 1 and yo is arbitrary (i.e. y is obtained from x by insertion of an
arbitrary number yo to the 0-th position), satisfies a linear recursion ypn454+1 = GZnt1 + A1 Tpp2 + -+ + Qp—1Zpntk
of order k + 1. Repeating this procedure, one arrives to the conclusion that the linear recursion is not sensitive to
any finite initial segment of a sequence.

Theorem 1. (1) If sequences x = (z9,x1,...) and y = (Yo, ¥1,-..) Satisfy a k-th order linear recursion with
. ) d
coefficients aq,...,ax—1, and ¢ is a constant, then the sequences x + y tef (zo + Yo, 1 + y1,-..) and
d ) .
cx ef cxg,cry,. .. salisfy the same recursion.
(2) For any constants ag,ay,-..,ax—1 and qo,q1,---,qe—1 there exists exactly one sequence x = (xo,x1,...)
such that xo = qo,.-.,ZTx—1 = qr—1 and the sequence satisfies the k-th order linear recursion with the
coefficients ag, . .., ap—1-

The proof is an exercise. Another formulation of Theorem 1:

Theorem 1, second formulation. For all ag,...,a,_1 the sequences xg, X1, ... salisfying the k-th order linear re-
cursion with coefficients ag, . .., ar_1 form a linear space V. The map A : V — C* defined as A(x) = (zo,...,Tr_1)
is a linear isomorphism (and therefore dimV = k).

Theorem 2. A sequence x = (zo, 21, . ..) satisfies a linear recursion if and only if the power series X = ZZO:() Tpt™
is a rational function (i.e. X = B(t)/A(t) where B and A are polynomials).

Proof. Let x satisfy a recursion. Take the recursion relation z,r = aoZy + @1Zp4+1 + -+ - + Qg—1Tp4r—1, multiply
it by t"** and sum over n = 0 to oo, to obtain:

e} k—1 e’} k 0
(1) Z J/'n+ktn+k = Z Qg Z an+stn+s = E astkfs Z .Tn+5tn+s
n=0 s=0 n=0 s=0 n=0

For any number s one has ZZOZO Tpyst™ = 37 2,t" = X — Py(t) where P,(t) def o+ -+ z_1t5 ! So

n=s
equation (1) reads as

k—1
X = Pot) = ast"™* (X — Py(1))
s=0

implying
k—1 k—1
(1= at )X =Pu(t) = Y at* " Py(),
s=0 s=0
so X = B(t)/A(t) where A(t) €1 — ap_1t — - — apt* and B(t) = Pp(t) — ag_1tPe_1(t) — -+ — a1 t* 1Py (t) (for

correctness take I def 0). The degree of A is k (the degree of the recursion) or less.
Let now X (t) = B(t)/A(t) where X(t) = > 02 jznt", A(t) = ao + -+ + apt® and B(t) = by + -+ + byt™.

n
Without loss of generality one may assume that a; # 0 (else we just consider A a polynomial of degree less than

1



k). Then B=AX =% 7 (Zf:o asTp—s)t" has no terms of degrees m + 1 and more; thus, Z]::o AsTpn_s = 0 for

n > m + 1, which is equivalent to Zp4my14k = —@0/Gk - Tptm1 —+ — Qg—1/Ak - Tpymar for alln >0 —1it is a
linear recursion of the order (m + 1 + k). O
Ezample 6. Fibonacci numbers is a sequence of integers xg,x1,... such that zg =0, 1y =1 and x,, = z,,—1 + Tp—2
for all n > 2. Let X = Y 0 j@,t". Then (12 +t — 1)X = Y 0z, ("2 + " — ") = —z0 + (o — 1)t +
o0
Yoo (= + py + p2)t" = —t,50 X = .
The numbers ¢; = (=1 4+ /5)/2 and @2 = —(1 + v/5)/2 are roots of the polynomial > + ¢ — 1, so t> +
_ t _ _ 1 1 1 _
t—1 = (t— 1)t — ¢2). Therefore one has —— = - (tf;n — tffm) = o m (14/%1 — 17%02) =

Yol (i — %) t". Once 1/¢; = (1++/5)/2 and 1/ps = (1 —+/5)/2 and ¢; — 5 = /5, one obtains an

1
P1—p2 o7 $3
explicit formula for the Fibonacci numbers:

1 [ 14+V5n 1—V5n
o= (- (50,

n
In other words, z, = % <\/52+1) (1 — (ié)n) Since H;g‘ < 1, one has y, def (;g) — 0 asn — oo.
Therefore limy, 0o Tn/Tn-1 = 1+2\/g lim,,— oo 15;3’: = # (the “golden ratio”).
EXERCISES

Exercise 1. Make the formulation of Theorem 2 more precise: how is the denominator A(#) connected with the
recursion equation?

Exercise 2. For the Fibonacci numbers x,, one has Y~ (w,t" = .= =t > o (t +t3)F =377 tF L (1 + )k,

T—t—¢7
Use the binomial formula (1 + ¢)¥ = an:() (T]:L) t™ to obtain an expression of z, via binomial coefficients.

Exercise 3. Let x,, be the number of ways to tile a rectangle 3 x n by rectangles 1 x 2 (positioned horizontally or
vertically). Prove that z,, satisfies a linear recursion. What is the order of this recursion? Find an explicit formula
for z,,.



