LECTURE 2.

Abstract. Linear recursion I: generating functions.

Definition 1. A sequence $x=\left(x_{0}, x_{1}, x_{2}, \ldots\right)$ is said to satisfy a k-th order linear recursion with constant coefficients a_{0}, \ldots, a_{k-1} if for every $n \geq 0$ there is a relation $x_{n+k}=a_{0} x_{n}+a_{1} x_{n+1}+\cdots+a_{k-1} x_{n+k-1}$.

Example 1. A sequence satisfying a first order recursion $x_{n+1}=q x_{n}$ (here $a_{0}=q$) is called a geometric progression.
Example 2. A Fibonacci sequence $0,1,1,2,3,5, \ldots$ satisfies a second order recursion $x_{n+2}=x_{n}+x_{n+1}$; here $a_{0}=a_{1}=1$.

Example 3. A periodic sequence $x=\left(x_{0}, x_{1}, \ldots, x_{k-1}, x_{0}, x_{1}, \ldots\right)$ with a period of length k satisfies a k-th order recursion $x_{n+k}=x_{n}$. Here $a_{0}=1$ and $a_{1}=\cdots=a_{k-1}=0$. In particular, a constant sequence $x_{n}=a$ satisfies a first order recursion $x_{n+1}=x_{n}$. Here $k=1$ and $a_{0}=1$.
Example 4. A sequence $x_{n}=n$ of natural numbers satisfies the second order recursion $x_{n+2}=2 x_{n+1}-x_{n}$.
Example 5. If a sequence x satisfies a linear recursion $x_{n+k}=a_{0} x_{n}+a_{1} x_{n+1}+\cdots+a_{k-1} x_{n+k-1}$ of order k then the sequence y defined as $y_{n} \stackrel{\text { def }}{=} x_{n-1}$ for $n \geq 1$ and y_{0} is arbitrary (i.e. y is obtained from x by insertion of an arbitrary number y_{0} to the 0 -th position), satisfies a linear recursion $y_{n+k+1}=a_{0} x_{n+1}+a_{1} x_{n+2}+\cdots+a_{k-1} x_{n+k}$ of order $k+1$. Repeating this procedure, one arrives to the conclusion that the linear recursion is not sensitive to any finite initial segment of a sequence.
Theorem 1. (1) If sequences $x=\left(x_{0}, x_{1}, \ldots\right)$ and $y=\left(y_{0}, y_{1}, \ldots\right)$ satisfy a k-th order linear recursion with coefficients a_{0}, \ldots, a_{k-1}, and c is a constant, then the sequences $x+y \stackrel{\text { def }}{=}\left(x_{0}+y_{0}, x_{1}+y_{1}, \ldots\right)$ and $c x \stackrel{\text { def }}{=} c x_{0}, c x_{1}, \ldots$ satisfy the same recursion.
(2) For any constants $a_{0}, a_{1}, \ldots, a_{k-1}$ and $q_{0}, q_{1}, \ldots, q_{k-1}$ there exists exactly one sequence $x=\left(x_{0}, x_{1}, \ldots\right)$ such that $x_{0}=q_{0}, \ldots, x_{k-1}=q_{k-1}$ and the sequence satisfies the k-th order linear recursion with the coefficients a_{0}, \ldots, a_{k-1}.

The proof is an exercise. Another formulation of Theorem 1:
Theorem 1, second formulation. For all a_{0}, \ldots, a_{k-1} the sequences x_{0}, x_{1}, \ldots satisfying the k-th order linear recursion with coefficients a_{0}, \ldots, a_{k-1} form a linear space V. The map $A: V \rightarrow \mathbb{C}^{k}$ defined as $A(x)=\left(x_{0}, \ldots, x_{k-1}\right)$ is a linear isomorphism (and therefore $\operatorname{dim} V=k$).
Theorem 2. A sequence $x=\left(x_{0}, x_{1}, \ldots\right)$ satisfies a linear recursion if and only if the power series $X=\sum_{n=0}^{\infty} x_{n} t^{n}$ is a rational function (i.e. $X=B(t) / A(t)$ where B and A are polynomials).
Proof. Let x satisfy a recursion. Take the recursion relation $x_{n+k}=a_{0} x_{n}+a_{1} x_{n+1}+\cdots+a_{k-1} x_{n+k-1}$, multiply it by t^{n+k} and sum over $n=0$ to ∞, to obtain:

$$
\begin{equation*}
\sum_{n=0}^{\infty} x_{n+k} t^{n+k}=\sum_{s=0}^{k-1} a_{s} \sum_{n=0}^{\infty} x_{n+s} t^{n+s}=\sum_{s=0}^{k} a_{s} t^{k-s} \sum_{n=0}^{\infty} x_{n+s} t^{n+s} \tag{1}
\end{equation*}
$$

For any number s one has $\sum_{n=0}^{\infty} x_{n+s} t^{n+s}=\sum_{n=s}^{\infty} x_{n} t^{n}=X-P_{s}(t)$ where $P_{s}(t) \stackrel{\text { def }}{=} x_{0}+\cdots+x_{s-1} t^{s-1}$. So equation (1) reads as

$$
X-P_{n}(t)=\sum_{s=0}^{k-1} a_{s} t^{k-s}\left(X-P_{s}(t)\right)
$$

implying

$$
\left(1-\sum_{s=0}^{k-1} a_{s} t^{k-s}\right) X=P_{n}(t)-\sum_{s=0}^{k-1} a_{s} t^{k-s} P_{k}(t)
$$

so $X=B(t) / A(t)$ where $A(t) \stackrel{\text { def }}{=} 1-a_{k-1} t-\cdots-a_{0} t^{k}$ and $B(t)=P_{k}(t)-a_{k-1} t P_{k-1}(t)-\cdots-a_{1} t^{k-1} P_{1}(t)$ (for correctness take $P_{0} \stackrel{\text { def }}{=} 0$). The degree of A is k (the degree of the recursion) or less.

Let now $X(t)=B(t) / A(t)$ where $X(t)=\sum_{n=0}^{\infty} x_{n} t^{n}, A(t)=a_{0}+\cdots+a_{k} t^{k}$ and $B(t)=b_{0}+\cdots+b_{m} t^{m}$. Without loss of generality one may assume that $a_{k} \neq 0$ (else we just consider A a polynomial of degree less than
$k)$. Then $B=A X=\sum_{n=0}^{\infty}\left(\sum_{s=0}^{k} a_{s} x_{n-s}\right) t^{n}$ has no terms of degrees $m+1$ and more; thus, $\sum_{s=0}^{k} a_{s} x_{n-s}=0$ for $n \geq m+1$, which is equivalent to $x_{n+m+1+k}=-a_{0} / a_{k} \cdot x_{n+m+1}-\cdots-a_{k-1} / a_{k} \cdot x_{n+m+k}$ for all $n \geq 0-$ it is a linear recursion of the order $(m+1+k)$.
Example 6. Fibonacci numbers is a sequence of integers x_{0}, x_{1}, \ldots such that $x_{0}=0, x_{1}=1$ and $x_{n}=x_{n-1}+x_{n-2}$ for all $n \geq 2$. Let $X=\sum_{n=0}^{\infty} x_{n} t^{n}$. Then $\left(t^{2}+t-1\right) X=\sum_{n=0}^{\infty} x_{n}\left(t^{n+2}+t^{n+1}-t^{n}\right)=-x_{0}+\left(x_{0}-x_{1}\right) t+$ $\sum_{n=2}^{\infty}\left(-x_{n}+x_{n-1}+x_{n-2}\right) t^{n}=-t$, so $X=\frac{t}{1-t-t^{2}}$.

The numbers $\varphi_{1}=(-1+\sqrt{5}) / 2$ and $\varphi_{2}=-(1+\sqrt{5}) / 2$ are roots of the polynomial $t^{2}+t-1$, so $t^{2}+$ $t-1=\left(t-\varphi_{1}\right)\left(t-\varphi_{2}\right)$. Therefore one has $\frac{t}{1-t-t^{2}}=\frac{1}{\varphi_{2}-\varphi_{1}}\left(\frac{\varphi_{1}}{t-\varphi_{1}}-\frac{\varphi_{2}}{t-\varphi_{2}}\right)=\frac{1}{\varphi_{1}-\varphi_{2}}\left(\frac{1}{1-t / \varphi_{1}}-\frac{1}{1-t / \varphi_{2}}\right)=$ $\frac{1}{\varphi_{1}-\varphi_{2}} \sum_{n=0}^{\infty}\left(\frac{1}{\varphi_{1}^{n}}-\frac{1}{\varphi_{2}^{n}}\right) t^{n}$. Once $1 / \varphi_{1}=(1+\sqrt{5}) / 2$ and $1 / \varphi_{2}=(1-\sqrt{5}) / 2$ and $\varphi_{1}-\varphi_{2}=\sqrt{5}$, one obtains an explicit formula for the Fibonacci numbers:

$$
x_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

In other words, $x_{n}=\frac{1}{\sqrt{5}}\left(\frac{\sqrt{5}+1}{2}\right)^{n}\left(1-\left(\frac{1-\sqrt{5}}{1+\sqrt{5}}\right)^{n}\right)$. Since $\left|\frac{1-\sqrt{5}}{1+\sqrt{5}}\right|<1$, one has $y_{n} \stackrel{\text { def }}{=}\left(\frac{1-\sqrt{5}}{1+\sqrt{5}}\right)^{n} \rightarrow 0$ as $n \rightarrow \infty$. Therefore $\lim _{n \rightarrow \infty} x_{n} / x_{n-1}=\frac{1+\sqrt{5}}{2} \lim _{n \rightarrow \infty} \frac{1+y_{n}}{1+y_{n-1}}=\frac{1+\sqrt{5}}{2}$ (the "golden ratio").

Exercises

Exercise 1. Make the formulation of Theorem 2 more precise: how is the denominator $A(t)$ connected with the recursion equation?

Exercise 2. For the Fibonacci numbers x_{n} one has $\sum_{n=0}^{\infty} x_{n} t^{n}=\frac{t}{1-t-t^{2}}=t \sum_{k=0}^{\infty}\left(t+t^{2}\right)^{k}=\sum_{k=0}^{\infty} t^{k+1}(1+t)^{k}$. Use the binomial formula $(1+t)^{k}=\sum_{m=0}^{k}\binom{k}{m} t^{m}$ to obtain an expression of x_{n} via binomial coefficients.
Exercise 3. Let x_{n} be the number of ways to tile a rectangle $3 \times n$ by rectangles 1×2 (positioned horizontally or vertically). Prove that x_{n} satisfies a linear recursion. What is the order of this recursion? Find an explicit formula for x_{n}.

