
HSE, FALL 2018 COMBINATORICS

LECTURE 2.

Abstract. Linear recursion I: generating functions.

De�nition 1. A sequence x = (x0; x1; x2; : : : ) is said to satisfy a k-th order linear recursion with constant
coe�cients a0; : : : ; ak−1 if for every n ≥ 0 there is a relation xn+k = a0xn + a1xn+1 + · · ·+ ak−1xn+k−1.
Example 1. A sequence satisfying a �rst order recursion xn+1 = qxn (here a0 = q) is called a geometric progression.
Example 2. A Fibonacci sequence 0; 1; 1; 2; 3; 5; : : : satis�es a second order recursion xn+2 = xn + xn+1; here
a0 = a1 = 1.
Example 3. A periodic sequence x = (x0; x1; : : : ; xk−1; x0; x1; : : : ) with a period of length k satis�es a k-th order
recursion xn+k = xn. Here a0 = 1 and a1 = · · · = ak−1 = 0. In particular, a constant sequence xn = a satis�es a
�rst order recursion xn+1 = xn. Here k = 1 and a0 = 1.
Example 4. A sequence xn = n of natural numbers satis�es the second order recursion xn+2 = 2xn+1 − xn.
Example 5. If a sequence x satis�es a linear recursion xn+k = a0xn + a1xn+1 + · · ·+ ak−1xn+k−1 of order k then
the sequence y de�ned as yn def= xn−1 for n ≥ 1 and y0 is arbitrary (i.e. y is obtained from x by insertion of an
arbitrary number y0 to the 0-th position), satis�es a linear recursion yn+k+1 = a0xn+1 + a1xn+2 + · · ·+ ak−1xn+k
of order k + 1. Repeating this procedure, one arrives to the conclusion that the linear recursion is not sensitive to
any �nite initial segment of a sequence.
Theorem 1. (1) If sequences x = (x0; x1; : : : ) and y = (y0; y1; : : : ) satisfy a k-th order linear recursion with

coe�cients a0; : : : ; ak−1, and c is a constant, then the sequences x + y def= (x0 + y0; x1 + y1; : : : ) and
cx def= cx0; cx1; : : : satisfy the same recursion.

(2) For any constants a0; a1; : : : ; ak−1 and q0; q1; : : : ; qk−1 there exists exactly one sequence x = (x0; x1; : : : )
such that x0 = q0; : : : ; xk−1 = qk−1 and the sequence satis�es the k-th order linear recursion with the
coe�cients a0; : : : ; ak−1.

The proof is an exercise. Another formulation of Theorem 1:
Theorem 1, second formulation. For all a0; : : : ; ak−1 the sequences x0; x1; : : : satisfying the k-th order linear re-
cursion with coe�cients a0; : : : ; ak−1 form a linear space V . The map A : V → Ck de�ned as A(x) = (x0; : : : ; xk−1)
is a linear isomorphism (and therefore dimV = k).
Theorem 2. A sequence x = (x0; x1; : : : ) satis�es a linear recursion if and only if the power series X = ∑∞

n=0 xntn
is a rational function (i.e. X = B(t)=A(t) where B and A are polynomials).
Proof. Let x satisfy a recursion. Take the recursion relation xn+k = a0xn + a1xn+1 + · · ·+ ak−1xn+k−1, multiply
it by tn+k and sum over n = 0 to ∞, to obtain:

(1)
∞∑
n=0

xn+ktn+k =
k−1∑
s=0

as
∞∑
n=0

xn+stn+s =
k∑
s=0

astk−s
∞∑
n=0

xn+stn+s

For any number s one has ∑∞
n=0 xn+stn+s = ∑∞

n=s xntn = X − Ps(t) where Ps(t) def= x0 + · · · + xs−1ts−1. So
equation (1) reads as

X − Pn(t) =
k−1∑
s=0

astk−s(X − Ps(t))

implying

(1−
k−1∑
s=0

astk−s)X = Pn(t)−
k−1∑
s=0

astk−sPk(t);

so X = B(t)=A(t) where A(t) def= 1− ak−1t− · · · − a0tk and B(t) = Pk(t)− ak−1tPk−1(t)− · · · − a1tk−1P1(t) (for
correctness take P0

def= 0). The degree of A is k (the degree of the recursion) or less.
Let now X(t) = B(t)=A(t) where X(t) = ∑∞

n=0 xntn, A(t) = a0 + · · · + aktk and B(t) = b0 + · · · + bmtm.
Without loss of generality one may assume that ak 6= 0 (else we just consider A a polynomial of degree less than

1



k). Then B = AX = ∑∞
n=0

(∑k
s=0 asxn−s

)
tn has no terms of degrees m+ 1 and more; thus, ∑k

s=0 asxn−s = 0 for
n ≥ m+ 1, which is equivalent to xn+m+1+k = −a0=ak · xn+m+1 − · · · − ak−1=ak · xn+m+k for all n ≥ 0 | it is a
linear recursion of the order (m+ 1 + k). ¤
Example 6. Fibonacci numbers is a sequence of integers x0; x1; : : : such that x0 = 0, x1 = 1 and xn = xn−1 + xn−2
for all n ≥ 2. Let X = ∑∞

n=0 xntn. Then (t2 + t − 1)X = ∑∞
n=0 xn(tn+2 + tn+1 − tn) = −x0 + (x0 − x1)t +∑∞

n=2(−xn + xn−1 + xn−2)tn = −t, so X = t
1−t−t2 .

The numbers '1 = (−1 +
√

5)=2 and '2 = −(1 +
√

5)=2 are roots of the polynomial t2 + t − 1, so t2 +
t − 1 = (t − '1)(t − '2). Therefore one has t

1−t−t2 = 1
'2−'1

(
'1
t−'1

− '2
t−'2

)
= 1

'1−'2

(
1

1−t='1
− 1

1−t='2

)
=

1
'1−'2

∑∞
n=0

(
1
'n1
− 1

'n2

)
tn. Once 1='1 = (1 +

√
5)=2 and 1='2 = (1 −√5)=2 and '1 − '2 =

√
5, one obtains an

explicit formula for the Fibonacci numbers:

xn = 1√
5

(
(1 +

√
5

2
)n − (1−√5

2
)n

)
:

In other words, xn = 1√
5

(√
5+1
2

)n (
1− ( 1−√5

1+
√

5
)n). Since

∣∣ 1−√5
1+
√

5
∣∣ < 1, one has yn def=

( 1−√5
1+
√

5
)n → 0 as n → ∞.

Therefore limn→∞ xn=xn−1 = 1+
√

5
2 limn→∞

1+yn
1+yn−1

= 1+
√

5
2 (the \golden ratio").

Exercises
Exercise 1. Make the formulation of Theorem 2 more precise: how is the denominator A(t) connected with the
recursion equation?
Exercise 2. For the Fibonacci numbers xn one has ∑∞

n=0 xntn = t
1−t−t2 = t∑∞

k=0(t+ t2)k = ∑∞
k=0 tk+1(1 + t)k.

Use the binomial formula (1 + t)k = ∑k
m=0

( k
m

)
tm to obtain an expression of xn via binomial coe�cients.

Exercise 3. Let xn be the number of ways to tile a rectangle 3×n by rectangles 1× 2 (positioned horizontally or
vertically). Prove that xn satis�es a linear recursion. What is the order of this recursion? Find an explicit formula
for xn.


