ABSTRACT. Linear recursion I: generating functions.

Definition 1. A sequence $x = (x_0, x_1, x_2, ...)$ is said to satisfy a k-th order linear recursion with constant coefficients a_0, \ldots, a_{k-1} if for every $n \ge 0$ there is a relation $x_{n+k} = a_0 x_n + a_1 x_{n+1} + \cdots + a_{k-1} x_{n+k-1}$.

Example 1. A sequence satisfying a first order recursion $x_{n+1} = qx_n$ (here $a_0 = q$) is called a geometric progression.

Example 2. A Fibonacci sequence $0, 1, 1, 2, 3, 5, \ldots$ satisfies a second order recursion $x_{n+2} = x_n + x_{n+1}$; here $a_0 = a_1 = 1$.

Example 3. A periodic sequence $x = (x_0, x_1, \ldots, x_{k-1}, x_0, x_1, \ldots)$ with a period of length k satisfies a k-th order recursion $x_{n+k} = x_n$. Here $a_0 = 1$ and $a_1 = \cdots = a_{k-1} = 0$. In particular, a constant sequence $x_n = a$ satisfies a first order recursion $x_{n+1} = x_n$. Here k = 1 and $a_0 = 1$.

Example 4. A sequence $x_n = n$ of natural numbers satisfies the second order recursion $x_{n+2} = 2x_{n+1} - x_n$.

Example 5. If a sequence x satisfies a linear recursion $x_{n+k} = a_0x_n + a_1x_{n+1} + \cdots + a_{k-1}x_{n+k-1}$ of order k then the sequence y defined as $y_n \stackrel{\text{def}}{=} x_{n-1}$ for $n \ge 1$ and y_0 is arbitrary (i.e. y is obtained from x by insertion of an arbitrary number y_0 to the 0-th position), satisfies a linear recursion $y_{n+k+1} = a_0x_{n+1} + a_1x_{n+2} + \cdots + a_{k-1}x_{n+k}$ of order k + 1. Repeating this procedure, one arrives to the conclusion that the linear recursion is not sensitive to any finite initial segment of a sequence.

- **Theorem 1.** (1) If sequences $x = (x_0, x_1, ...)$ and $y = (y_0, y_1, ...)$ satisfy a k-th order linear recursion with coefficients $a_0, ..., a_{k-1}$, and c is a constant, then the sequences $x + y \stackrel{def}{=} (x_0 + y_0, x_1 + y_1, ...)$ and $cx \stackrel{def}{=} cx_0, cx_1, ...$ satisfy the same recursion.
 - (2) For any constants $a_0, a_1, \ldots, a_{k-1}$ and $q_0, q_1, \ldots, q_{k-1}$ there exists exactly one sequence $x = (x_0, x_1, \ldots)$ such that $x_0 = q_0, \ldots, x_{k-1} = q_{k-1}$ and the sequence satisfies the k-th order linear recursion with the coefficients a_0, \ldots, a_{k-1} .

The proof is an exercise. Another formulation of Theorem 1:

Theorem 1, second formulation. For all a_0, \ldots, a_{k-1} the sequences x_0, x_1, \ldots satisfying the k-th order linear recursion with coefficients a_0, \ldots, a_{k-1} form a linear space V. The map $A: V \to \mathbb{C}^k$ defined as $A(x) = (x_0, \ldots, x_{k-1})$ is a linear isomorphism (and therefore dim V = k).

Theorem 2. A sequence $x = (x_0, x_1, ...)$ satisfies a linear recursion if and only if the power series $X = \sum_{n=0}^{\infty} x_n t^n$ is a rational function (i.e. X = B(t)/A(t) where B and A are polynomials).

Proof. Let x satisfy a recursion. Take the recursion relation $x_{n+k} = a_0 x_n + a_1 x_{n+1} + \cdots + a_{k-1} x_{n+k-1}$, multiply it by t^{n+k} and sum over n = 0 to ∞ , to obtain:

(1)
$$\sum_{n=0}^{\infty} x_{n+k} t^{n+k} = \sum_{s=0}^{k-1} a_s \sum_{n=0}^{\infty} x_{n+s} t^{n+s} = \sum_{s=0}^{k} a_s t^{k-s} \sum_{n=0}^{\infty} x_{n+s} t^{n+s}$$

For any number s one has $\sum_{n=0}^{\infty} x_{n+s}t^{n+s} = \sum_{n=s}^{\infty} x_nt^n = X - P_s(t)$ where $P_s(t) \stackrel{\text{def}}{=} x_0 + \cdots + x_{s-1}t^{s-1}$. So equation (1) reads as

$$X - P_n(t) = \sum_{s=0}^{k-1} a_s t^{k-s} (X - P_s(t))$$

implying

$$(1 - \sum_{s=0}^{k-1} a_s t^{k-s}) X = P_n(t) - \sum_{s=0}^{k-1} a_s t^{k-s} P_k(t),$$

so X = B(t)/A(t) where $A(t) \stackrel{\text{def}}{=} 1 - a_{k-1}t - \dots - a_0t^k$ and $B(t) = P_k(t) - a_{k-1}tP_{k-1}(t) - \dots - a_1t^{k-1}P_1(t)$ (for correctness take $P_0 \stackrel{\text{def}}{=} 0$). The degree of A is k (the degree of the recursion) or less.

Let now X(t) = B(t)/A(t) where $X(t) = \sum_{n=0}^{\infty} x_n t^n$, $A(t) = a_0 + \cdots + a_k t^k$ and $B(t) = b_0 + \cdots + b_m t^m$. Without loss of generality one may assume that $a_k \neq 0$ (else we just consider A a polynomial of degree less than k). Then $B = AX = \sum_{n=0}^{\infty} \left(\sum_{s=0}^{k} a_s x_{n-s} \right) t^n$ has no terms of degrees m+1 and more; thus, $\sum_{s=0}^{k} a_s x_{n-s} = 0$ for $n \ge m+1$, which is equivalent to $x_{n+m+1+k} = -a_0/a_k \cdot x_{n+m+1} - \dots - a_{k-1}/a_k \cdot x_{n+m+k}$ for all $n \ge 0$ — it is a linear recursion of the order (m+1+k).

Example 6. Fibonacci numbers is a sequence of integers x_0, x_1, \ldots such that $x_0 = 0, x_1 = 1$ and $x_n = x_{n-1} + x_{n-2}$ for all $n \ge 2$. Let $X = \sum_{n=0}^{\infty} x_n t^n$. Then $(t^2 + t - 1)X = \sum_{n=0}^{\infty} x_n (t^{n+2} + t^{n+1} - t^n) = -x_0 + (x_0 - x_1)t + \sum_{n=2}^{\infty} (-x_n + x_{n-1} + x_{n-2})t^n = -t$, so $X = \frac{t}{1 - t - t^2}$.

The numbers $\varphi_1 = (-1 + \sqrt{5})/2$ and $\varphi_2 = -(1 + \sqrt{5})/2$ are roots of the polynomial $t^2 + t - 1$, so $t^2 + t - 1 = (t - \varphi_1)(t - \varphi_2)$. Therefore one has $\frac{t}{1 - t - t^2} = \frac{1}{\varphi_2 - \varphi_1} \left(\frac{\varphi_1}{t - \varphi_1} - \frac{\varphi_2}{t - \varphi_2}\right) = \frac{1}{\varphi_1 - \varphi_2} \left(\frac{1}{1 - t/\varphi_1} - \frac{1}{1 - t/\varphi_2}\right) = \frac{1}{\varphi_1 - \varphi_2} \sum_{n=0}^{\infty} \left(\frac{1}{\varphi_1^n} - \frac{1}{\varphi_2^n}\right) t^n$. Once $1/\varphi_1 = (1 + \sqrt{5})/2$ and $1/\varphi_2 = (1 - \sqrt{5})/2$ and $\varphi_1 - \varphi_2 = \sqrt{5}$, one obtains an explicit formula for the Fibonacci numbers:

$$x_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n \right).$$

In other words, $x_n = \frac{1}{\sqrt{5}} \left(\frac{\sqrt{5}+1}{2}\right)^n \left(1 - \left(\frac{1-\sqrt{5}}{1+\sqrt{5}}\right)^n\right)$. Since $\left|\frac{1-\sqrt{5}}{1+\sqrt{5}}\right| < 1$, one has $y_n \stackrel{\text{def}}{=} \left(\frac{1-\sqrt{5}}{1+\sqrt{5}}\right)^n \to 0$ as $n \to \infty$. Therefore $\lim_{n\to\infty} x_n/x_{n-1} = \frac{1+\sqrt{5}}{2} \lim_{n\to\infty} \frac{1+y_n}{1+y_{n-1}} = \frac{1+\sqrt{5}}{2}$ (the "golden ratio").

Exercises

Exercise 1. Make the formulation of Theorem 2 more precise: how is the denominator A(t) connected with the recursion equation?

Exercise 2. For the Fibonacci numbers x_n one has $\sum_{n=0}^{\infty} x_n t^n = \frac{t}{1-t-t^2} = t \sum_{k=0}^{\infty} (t+t^2)^k = \sum_{k=0}^{\infty} t^{k+1} (1+t)^k$. Use the binomial formula $(1+t)^k = \sum_{m=0}^k {k \choose m} t^m$ to obtain an expression of x_n via binomial coefficients.

Exercise 3. Let x_n be the number of ways to tile a rectangle $3 \times n$ by rectangles 1×2 (positioned horizontally or vertically). Prove that x_n satisfies a linear recursion. What is the order of this recursion? Find an explicit formula for x_n .