LECTURE 1.

Abstract. Binomial coefficients.

Let n, m be nonnegative integers, $0 \leq m \leq n$.
Definition 1. $\binom{n}{m}$ is the number of subsets of m elements in the set $1,2, \ldots, n$ (or in any other set of n elements).
Definition 2. $\binom{n}{m}$ is the coefficient at t^{m} in the polynomial $(1+t)^{n}$. In other words,

$$
\begin{equation*}
(1+t)^{n}=\binom{n}{0}+\binom{n}{1} t+\cdots+\binom{n}{m} t^{m}+\cdots+\binom{n}{n} t^{n} \tag{1}
\end{equation*}
$$

Pascal's triangle is a diagram of integers organized as follows:

				1				
			1		1			
		1		2		1		
	1		3		3		1	
1		4		6		4		1

The leftmost and the rightmost terms of each row are equal to 1 , and every term inside the row is a sum of its two neighbors from the upper row.
Definition 3. $\binom{n}{m}$ is the m-th term in the n-th row (numeration starting from 0) of the Pascal's triangle.
Definition 4. $\binom{n}{m} \stackrel{\text { def }}{=} \frac{n!}{m!(n-m)!}$ where $k!$ is defined as a product $1 \times 2 \times \cdots \times k$ for a positive integer k and $0!=1$ by definition.

Theorem 1. All the four definitions above are equivalent. The numbers $\binom{n}{m}$ so defined have the following properties:
(1) (Pascal's identity) $\binom{n}{m}=\binom{n-1}{m-1}+\binom{n-1}{m}$,
(2) $\binom{n}{m}=\binom{n}{n-m}$;
(3) $\sum_{m=0}^{n}\binom{n}{m} \stackrel{\text { def }}{=}\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n}=2^{n}$;
(4) $\sum_{m=0}^{n}(-1)^{m}\binom{n}{m} \stackrel{\text { def }}{=}\binom{n}{0}-\binom{n}{1}+\cdots \pm\binom{ n}{n}=0$ if $n>0$;
(5) $\sum_{m=0}^{n} m\binom{n}{m} \stackrel{\text { def }}{=}\binom{n}{1}+2\binom{n}{2}+\cdots+n\binom{n}{n}=n 2^{n-1}$;
(6) $\sum_{m=0}^{n}\binom{n}{m}^{2} \stackrel{\text { def }}{=}\binom{n}{0}^{2}+\binom{n}{1}^{2}+\cdots+\binom{n}{n}^{2}=\binom{2 n}{n}$.

Proof.

$1 \Longleftrightarrow 2$. One has $(1+t)^{n}=(1+t)(1+t) \ldots(1+t)$ (n terms); number the factors left to right from 1 to n. Opening brackets one has to choose either 1 or t from each of the n factors. Let $A \subset\{1,2, \ldots, n\}$ be the set of numbers of factors from which t was chosen. Such choice gives the term $t^{\# A}$ where $\# A$ means the number of elements in A. Now the coefficient at t^{m} equals the numbers of $A \subset\{1,2, \ldots, n\}$ such that $\# A=m$.
$1 \Longleftrightarrow 4$. Arrange all the elements $1,2, \ldots, n$ in some way: $\sigma(1), \sigma(2), \ldots, \sigma(n)$ where $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ is a bijection, and consider a m-element set $\{\sigma(1), \ldots, \sigma(m)\}$. There are totally n ! arrangements (bijections) σ. A permutation of the first m elements of the arrangement and of its last $(n-m)$ elements will not change the set $\{\sigma(1), \ldots, \sigma(m)\}$, so a given set $\left\{a_{1}, \ldots, a_{m}\right\}$ can be obtained from $m!(n-m)$! permutations. Therefore the total number of sets is $\frac{n!}{m!(n-m)!}$.
$2 \Longleftrightarrow 4$. The m-th derivative of the two sides of the identity $(1+t)^{n}=\sum_{k=0}^{k}\binom{n}{k} t^{k}$ is $n(n-1) \ldots(n-m+1)(1+$ $t)^{n-m}=\sum_{k=m}^{n}\binom{n}{k} k(k-1) \ldots(k-m+1) t^{k-m}$. Taking $t=0$ we see that all the terms in the right-hand side, except the very first one, disappear. So $t=0$ gives $n(n-1) \ldots(n-m+1)=\frac{n!}{(n-m)!}=m!\binom{n}{m}$.

To prove that 3 is equivalent to the other ones it suffices to prove Property 1 for them.

Property 1. For Definition 2: the free term in $(1+t)^{n}$ is equal to the value of $(1+t)^{n}$ at $t=0$, that is, to 1 . It means $\binom{n}{0}=1$. The leading term in $(1+t)^{n}$ is, obviously, t^{n}, which means $\binom{n}{n}=1$. Consider now the formula $(1+t)^{n}=(1+t) \cdot(1+t)^{n-1}$. The term $\binom{n}{m} t^{m}$ in the left-hand side is the sum of two terms in the right-hand side: $1 \cdot\binom{n-1}{m} t^{m}$ and $t \cdot\binom{n-1}{m-1} t^{m-1}$. Thus one has $\binom{n}{m}=\binom{n-1}{m-1}+\binom{n-1}{m}-$ it is Property 1 .

For Definition 4: denote $b_{m}^{n} \stackrel{\text { def }}{=} \frac{n!}{m!(n-m)!}$ Now $b_{0}^{n}=\frac{n!}{n!0!}=1=\frac{n!}{0!n!}=b_{n}^{n}$. Also

$$
b_{m-1}^{n-1}+b_{m}^{n-1}=\frac{(n-1)!}{(m-1)!(n-m)!}+\frac{(n-1)!}{m!(n-m-1)!}=\frac{(n-1)!}{m!(n-m)!}(m+n-m)=\frac{n \cdot(n-1)!}{m!(n-m)!}=b_{m}^{n}
$$

Remark. It is often convenient to assume $\binom{n}{m}=0$ if $m<0$ or $m>n$. This agrees with Definitions 2 and 3 (check!).
For Definition 1: split the set of all m-element subsets of $\{1, \ldots, n\}$ into two groups: the subsets containing n and the subsets not containing n. If a subset does not contain n then it is a m-element subset of $1, \ldots,(n-1)$; there are $\binom{n-1}{m}$ of them. If a subset contains n then its remaining elements form a $(m-1)$-element subset of $1, \ldots,(n-1)$, so there are $\binom{n-1}{m-1}$ of them. The total number of all subsets is $\binom{n-1}{m}+\binom{n-1}{m-1}$; but from the other side, it is $\binom{n}{m}$.

Property 2. For Definition 2: one has $(1+t)^{n}=t^{n} \cdot(1+1 / t)^{n}$. The $\binom{n}{m} t^{m}$ in the left-hand side is equal in the right-hand side to t^{n} multiplied by the term containing $\frac{1}{t^{n-m}}$. This term is $\binom{n}{n-m} \frac{1}{t^{n-m}}$, so $\binom{n}{m}=\binom{n}{n-m}$.

For Definition 1: to any m-element subset $A \subseteq\{1, \ldots, n\}$ one can relate its complement $\bar{A} \stackrel{\text { def }}{=}\{1, \ldots, n\} \backslash A$; the complement contains $n-m$ elements. A itself is determined by its complement (it is the complement of the complement), so $\{1, \ldots, n\}$ has as many m-element subsets as $(n-m)$-element subsets.

For Definition 4: evident. For Definition 3: trivial induction by the number of the row.
Property 3. For Definition 2: substitute $t=1$ in the indentity $(1+t)^{n}=\binom{n}{0}+\binom{n}{1} t+\cdots+\binom{n}{m} t^{m}+\cdots+\binom{n}{n} t^{n}$.
For Definition 3: it follows from the definition that the sum of the elements of the n-th row is twice the sum of the elements of the $(n-1)$-th row. Since the sum of the elements of the 0 -th row is $1=2^{0}$, trivial induction implies that it is 2^{n} in the n-th row.

For Definition 1: to describe a subset of $\{1, \ldots, n\}$ one should say for every its element whether it belongs to a subset or not. So there are n independent choices from 2 variants each; this gives the total number of subsets being 2^{n}. Since the number of m-element subsets is $\binom{n}{m}$ where m can be from 0 to n, Property 3 follows.

For Definition 4 no proof is known.
Property 4. For Definition 2: substitute $t=-1$ at $(1+t)^{n}=\sum_{m=0}^{n}\binom{n}{m} t^{m}$.
For Definition 3: the alternating-sign sum of the elements of the n-th row is equal twice the alternating sum of the elements of the $(n-1)$-th row, provided $n>0$ (check!). Now induction on n implies Property 4.

For Definition 1: let $A \subset\{1, \ldots, n\}$; denote $c(A) \stackrel{\text { def }}{=} A \Delta\{n\}$ (symmetric difference, i.e. if A contains n then $c(A)$ is obtained by deletion of n, and if A does not contain n then $c(A)$ is obtained by adding it). The operation c is an involution: $c(c(A))=A$, the subsets of $\{1, \ldots, n\}$ are split into nonintersecting pairs $\{A, c(A)\}$. The number of elements in A and $c(A)$ differs by 1 and therefore has opposite parity. So one obtains that $\{1, \ldots, n\}$ has as many subsets A with $\# A$ even, as subsets A with $\# A$ odd. This implies $\sum_{k=0}^{n / 2}\binom{n}{2 k}=\sum_{k=0}^{n / 2}\binom{n}{2 k+1}$, which is equivalent to Property 4.

For Definition 4 no proof is known.
Property 5. For Definition 2: take a derivative of the identity (1) obtaining $n(1+t)^{n-1}=\sum_{m=0}^{n} m\binom{n}{m} t^{m-1}$. Substitution $t=1$ gives the required result.

For Definition 3: $\sum_{m=0}^{n} m\binom{n}{m}=\sum_{m=0}^{n} m\binom{n-1}{m}+\sum_{m=0}^{n} m\binom{n-1}{m-1}=\sum_{m=0}^{n} m\binom{n-1}{m}+\sum_{m=0}^{n}(m-1)\binom{n-1}{m-1}+$ $\sum_{m=0}^{n}\binom{n-1}{m-1}$. The first two terms are equal to $(n-1) 2^{n-2}$ by induction (note that the summation range here is irrelevant!), and the third one, to 2^{n-1} as proved above. Totally one has $(n-1) 2^{n-2}+(n-1) 2^{n-2}+2^{n-1}=n 2^{n-1}$.

For Definition 1: $m\binom{n}{m}$ is the number of m-element subsets of $\{1, \ldots, n\}$ with one distinguished element. Thus the left-hand side of the Property 5 is equal to the total number of subsets with one distinguished elements. Now take an element to distinguish - this gives n variants of choice - and then take a set (of any size) of the remaining elements, which give 2^{n-1} variants. Totally, $n 2^{n-1}$.

Property 6. From Definition 2: consider the identity $(1+t)^{n} \cdot(1+t)^{n}=(1+t)^{2 n}$. Replace the right-hand side and each of the factors in the left-hand side by the right-hand side of (1):

$$
\left(\binom{n}{0}+\binom{n}{1} t+\cdots+\binom{n}{n} t^{n}\right) \cdot\left(\binom{n}{0}+\binom{n}{1} t+\cdots+\binom{n}{n} t^{n}\right)=\binom{2 n}{0}+\binom{2 n}{1} t+\cdots+\binom{2 n}{2 n} t^{2 n}
$$

The right-hand side contains the term $\binom{2 n}{n} t^{n}$. The same power of t in the left-hand side appears as the result of multiplication of the terms $\binom{n}{m} t^{m}$ and $\binom{n}{n-m} t^{n-m}$ where m can be any number from 0 to n. Therefore one has $\binom{2 n}{n}=\sum_{m=0}^{n}\binom{n}{m}\binom{n}{n-m}=\sum_{m=0}^{n}\binom{n}{m}^{2}$ — the last equality follows from Property 2.

From Definition 1: consider any set $A \subset\{1, \ldots, 2 n\}$. One has $A=A_{1} \cup A_{2}$ where $A_{1}=A \cap\{1, \ldots, n\}$ and $A_{2}=A \cap\{n, \ldots, 2 n\}$. The set A is uniquely determined by A_{1} and A_{2}, which can be any sets containing $m \stackrel{\text { def }}{=} \# A_{1}$ and $n-m=\# A_{2}$ elements. There are $\binom{n}{m}$ possible sets A_{1} and $\binom{n}{n-m}=\binom{n}{m}$ possible sets A_{2}. Thus there are $\binom{n}{m}^{2}$ possibilities for A with a fixed m, and Property 6 follows.

Exercises

Problem 1. a) Write the first 10 lines of the Pascal's triangle (numbered 0 to 9) modulo 2, that is, replacing even binomial coefficients by 0 , and odd, by 1 . b) Prove that if $n=2^{k}$ for some integer k then the n-th line of Pascal's triangle modulo 2 looks like $10 \ldots 01$ (all the terms inside are 0). c) Prove that if $n \neq 2^{k}$ then it is not so: the n-th line contains at least three 1s.
Problem 2. a) Compute for every n the sums $\sum_{m=0}^{\infty}\binom{n}{2 m}=\binom{n}{0}+\binom{n}{2}+\cdots+\binom{n}{2 m}+\ldots$ and $\sum_{m=0}^{\infty}\binom{n}{2 m+1}=$ $\binom{n}{1}+\binom{n}{3}+\cdots+\binom{n}{2 m+1}+\ldots$ Give as many proofs as you can. (Recall that $\binom{n}{m}=0$ if $m>n$, so the sums are actually finite.) b^{*}) Compute $\sum_{m=0}^{\infty}\binom{n}{4 m}$ and $\sum_{m=0}^{\infty}\binom{n}{3 m}$.

