
HSE, FALL 2018. COMBINATORICS

LECTURE 1.

Abstract. Binomial coe�cients.

Let n;m be nonnegative integers, 0 ≤ m ≤ n.

De�nition 1.
(n
m

)
is the number of subsets of m elements in the set 1; 2; : : : ; n (or in any other set of n elements).

De�nition 2.
(n
m

)
is the coe�cient at tm in the polynomial (1 + t)n. In other words,

(1) (1 + t)n =
(n

0

)
+

(n
1

)
t+ · · ·+

(n
m

)
tm + · · ·+

(n
n

)
tn:

Pascal's triangle is a diagram of integers organized as follows:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
: : : : : : : : : : : : : : : : : : : : : : : : : : : :

The leftmost and the rightmost terms of each row are equal to 1, and every term inside the row is a sum of its two
neighbors from the upper row.

De�nition 3.
(n
m

)
is the m-th term in the n-th row (numeration starting from 0) of the Pascal's triangle.

De�nition 4.
(n
m

) def= n!
m!(n−m)! where k! is de�ned as a product 1× 2× · · · × k for a positive integer k and 0! = 1

by de�nition.

Theorem 1. All the four de�nitions above are equivalent. The numbers
(n
m

)
so de�ned have the following properties:

(1) (Pascal's identity)
(n
m

)
=

(n−1
m−1

)
+

(n−1
m

)
,

(2)
(n
m

)
=

( n
n−m

)
;

(3) ∑n
m=0

(n
m

) def=
(n

0
)

+
(n

1
)

+ · · ·+ (n
n
)

= 2n;
(4) ∑n

m=0(−1)m
(n
m

) def=
(n

0
)− (n

1
)

+ · · · ± (n
n
)

= 0 if n > 0;
(5) ∑n

m=0m
(n
m

) def=
(n

1
)

+ 2
(n

2
)

+ · · ·+ n
(n
n
)

= n2n−1;
(6) ∑n

m=0
(n
m

)2 def=
(n

0
)2 +

(n
1
)2 + · · ·+ (n

n
)2 =

(2n
n

)
.

Proof.

1 ⇐⇒ 2. One has (1+t)n = (1+t)(1+t) : : : (1+t) (n terms); number the factors left to right from 1 to n. Opening
brackets one has to choose either 1 or t from each of the n factors. Let A ⊂ {1; 2; : : : ; n} be the set of numbers of
factors from which t was chosen. Such choice gives the term t#A where #A means the number of elements in A.
Now the coe�cient at tm equals the numbers of A ⊂ {1; 2; : : : ; n} such that #A = m.

1 ⇐⇒ 4. Arrange all the elements 1; 2; : : : ; n in some way: �(1); �(2); : : : ; �(n) where � : {1; : : : ; n} → {1; : : : ; n}
is a bijection, and consider a m-element set {�(1); : : : ; �(m)}. There are totally n! arrangements (bijections) �. A
permutation of the �rst m elements of the arrangement and of its last (n −m) elements will not change the set
{�(1); : : : ; �(m)}, so a given set {a1; : : : ; am} can be obtained from m!(n−m)! permutations. Therefore the total
number of sets is n!

m!(n−m)! .

2 ⇐⇒ 4. The m-th derivative of the two sides of the identity (1 + t)n = ∑k
k=0

(n
k
)
tk is n(n− 1) : : : (n−m+ 1)(1 +

t)n−m = ∑n
k=m

(n
k
)
k(k − 1) : : : (k −m + 1)tk−m. Taking t = 0 we see that all the terms in the right-hand side,

except the very �rst one, disappear. So t = 0 gives n(n− 1) : : : (n−m+ 1) = n!
(n−m)! = m!

(n
m

)
.

To prove that 3 is equivalent to the other ones it su�ces to prove Property 1 for them.
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Property 1. For De�nition 2: the free term in (1 + t)n is equal to the value of (1 + t)n at t = 0, that is, to 1. It
means

(n
0
)

= 1. The leading term in (1 + t)n is, obviously, tn, which means
(n
n
)

= 1. Consider now the formula
(1 + t)n = (1 + t) · (1 + t)n−1. The term

(n
m

)
tm in the left-hand side is the sum of two terms in the right-hand side:

1 · (n−1
m

)
tm and t · (n−1

m−1
)
tm−1. Thus one has

(n
m

)
=

(n−1
m−1

)
+

(n−1
m

)
| it is Property 1.

For De�nition 4: denote bnm
def= n!

m!(n−m)! Now bn0 = n!
n!0! = 1 = n!

0!n! = bnn. Also

bn−1
m−1 + bn−1

m = (n− 1)!
(m− 1)!(n−m)! + (n− 1)!

m!(n−m− 1)! = (n− 1)!
m!(n−m)! (m+ n−m) = n · (n− 1)!

m!(n−m)! = bnm:

¤

Remark. It is often convenient to assume
(n
m

)
= 0 if m < 0 or m > n. This agrees with De�nitions 2 and 3 (check!).

For De�nition 1: split the set of all m-element subsets of {1; : : : ; n} into two groups: the subsets containing n
and the subsets not containing n. If a subset does not contain n then it is a m-element subset of 1; : : : ; (n − 1);
there are

(n−1
m

)
of them. If a subset contains n then its remaining elements form a (m − 1)-element subset of

1; : : : ; (n − 1), so there are
(n−1
m−1

)
of them. The total number of all subsets is

(n−1
m

)
+

(n−1
m−1

)
; but from the other

side, it is
(n
m

)
.

Property 2. For De�nition 2: one has (1 + t)n = tn · (1 + 1=t)n. The
(n
m

)
tm in the left-hand side is equal in the

right-hand side to tn multiplied by the term containing 1
tn−m . This term is

( n
n−m

) 1
tn−m , so

(n
m

)
=

( n
n−m

)
.

For De�nition 1: to any m-element subset A ⊆ {1; : : : ; n} one can relate its complement A def= {1; : : : ; n} \ A;
the complement contains n −m elements. A itself is determined by its complement (it is the complement of the
complement), so {1; : : : ; n} has as many m-element subsets as (n−m)-element subsets.

For De�nition 4: evident. For De�nition 3: trivial induction by the number of the row.

Property 3. For De�nition 2: substitute t = 1 in the indentity (1 + t)n =
(n

0
)

+
(n

1
)
t+ · · ·+ (n

m
)
tm + · · ·+ (n

n
)
tn.

For De�nition 3: it follows from the de�nition that the sum of the elements of the n-th row is twice the sum
of the elements of the (n − 1)-th row. Since the sum of the elements of the 0-th row is 1 = 20, trivial induction
implies that it is 2n in the n-th row.

For De�nition 1: to describe a subset of {1; : : : ; n} one should say for every its element whether it belongs to
a subset or not. So there are n independent choices from 2 variants each; this gives the total number of subsets
being 2n. Since the number of m-element subsets is

(n
m

)
where m can be from 0 to n, Property 3 follows.

For De�nition 4 no proof is known.

Property 4. For De�nition 2: substitute t = −1 at (1 + t)n = ∑n
m=0

(n
m

)
tm.

For De�nition 3: the alternating-sign sum of the elements of the n-th row is equal twice the alternating sum of
the elements of the (n− 1)-th row, provided n > 0 (check!). Now induction on n implies Property 4.

For De�nition 1: let A ⊂ {1; : : : ; n}; denote c(A) def= A � {n} (symmetric di�erence, i.e. if A contains n then
c(A) is obtained by deletion of n, and if A does not contain n then c(A) is obtained by adding it). The operation c
is an involution: c(c(A)) = A, the subsets of {1; : : : ; n} are split into nonintersecting pairs {A; c(A)}. The number
of elements in A and c(A) di�ers by 1 and therefore has opposite parity. So one obtains that {1; : : : ; n} has as many
subsets A with #A even, as subsets A with #A odd. This implies ∑n=2

k=0
( n

2k
)

= ∑n=2
k=0

( n
2k+1

)
, which is equivalent

to Property 4.
For De�nition 4 no proof is known.

Property 5. For De�nition 2: take a derivative of the identity (1) obtaining n(1 + t)n−1 = ∑n
m=0m

(n
m

)
tm−1.

Substitution t = 1 gives the required result.
For De�nition 3: ∑n

m=0m
(n
m

)
= ∑n

m=0m
(n−1
m

)
+ ∑n

m=0m
(n−1
m−1

)
= ∑n

m=0m
(n−1
m

)
+ ∑n

m=0(m − 1)
(n−1
m−1

)
+∑n

m=0
(n−1
m−1

)
. The �rst two terms are equal to (n − 1)2n−2 by induction (note that the summation range here is

irrelevant!), and the third one, to 2n−1 as proved above. Totally one has (n−1)2n−2 +(n−1)2n−2 +2n−1 = n2n−1.
For De�nition 1: m

(n
m

)
is the number of m-element subsets of {1; : : : ; n} with one distinguished element. Thus

the left-hand side of the Property 5 is equal to the total number of subsets with one distinguished elements. Now
take an element to distinguish | this gives n variants of choice | and then take a set (of any size) of the remaining
elements, which give 2n−1 variants. Totally, n2n−1.

Property 6. From De�nition 2: consider the identity (1 + t)n · (1 + t)n = (1 + t)2n. Replace the right-hand side and
each of the factors in the left-hand side by the right-hand side of (1):

((n
0

)
+

(n
1

)
t+ · · ·+

(n
n

)
tn

) · (
(n

0

)
+

(n
1

)
t+ · · ·+

(n
n

)
tn

)
=

(2n
0

)
+

(2n
1

)
t+ · · ·+

(2n
2n

)
t2n:



The right-hand side contains the term
(2n
n

)
tn. The same power of t in the left-hand side appears as the result of

multiplication of the terms
(n
m

)
tm and

( n
n−m

)
tn−m where m can be any number from 0 to n. Therefore one has(2n

n
)

= ∑n
m=0

(n
m

)( n
n−m

)
= ∑n

m=0
(n
m

)2 | the last equality follows from Property 2.
From De�nition 1: consider any set A ⊂ {1; : : : ; 2n}. One has A = A1 ∪ A2 where A1 = A ∩ {1; : : : ; n} and

A2 = A∩{n; : : : ; 2n}. The set A is uniquely determined by A1 and A2, which can be any sets containing m def= #A1
and n −m = #A2 elements. There are

(n
m

)
possible sets A1 and

( n
n−m

)
=

(n
m

)
possible sets A2. Thus there are(n

m
)2 possibilities for A with a �xed m, and Property 6 follows.

Exercises
Problem 1. a) Write the �rst 10 lines of the Pascal's triangle (numbered 0 to 9) modulo 2, that is, replacing even
binomial coe�cients by 0, and odd, by 1. b) Prove that if n = 2k for some integer k then the n-th line of Pascal's
triangle modulo 2 looks like 10 : : : 01 (all the terms inside are 0). c) Prove that if n 6= 2k then it is not so: the n-th
line contains at least three 1s.
Problem 2. a) Compute for every n the sums ∑∞

m=0
( n

2m
)

=
(n

0
)

+
(n

2
)

+ · · · +
( n

2m
)

+ : : : and ∑∞
m=0

( n
2m+1

)
=(n

1
)

+
(n

3
)

+ · · · + ( n
2m+1

)
+ : : : . Give as many proofs as you can. (Recall that

(n
m

)
= 0 if m > n, so the sums are

actually �nite.) b*) Compute ∑∞
m=0

( n
4m

)
and ∑∞

m=0
( n

3m
)
.


