ABSTRACT. Binomial coefficients.

Let n, m be nonnegative integers, $0 \le m \le n$.

Definition 1. $\binom{n}{m}$ is the number of subsets of *m* elements in the set $1, 2, \ldots, n$ (or in any other set of *n* elements). **Definition 2.** $\binom{n}{m}$ is the coefficient at t^m in the polynomial $(1+t)^n$. In other words,

(1)
$$(1+t)^n = \binom{n}{0} + \binom{n}{1}t + \dots + \binom{n}{m}t^m + \dots + \binom{n}{n}t^n.$$

Pascal's triangle is a diagram of integers organized as follows:

The leftmost and the rightmost terms of each row are equal to 1, and every term inside the row is a sum of its two neighbors from the upper row.

Definition 3. $\binom{n}{m}$ is the *m*-th term in the *n*-th row (numeration starting from 0) of the Pascal's triangle.

Definition 4. $\binom{n}{m} \stackrel{\text{def}}{=} \frac{n!}{m!(n-m)!}$ where k! is defined as a product $1 \times 2 \times \cdots \times k$ for a positive integer k and 0! = 1by definition.

Theorem 1. All the four definitions above are equivalent. The numbers $\binom{n}{m}$ so defined have the following properties:

(1) (Pascal's identity) $\binom{n}{m} = \binom{n-1}{m-1} + \binom{n-1}{m}$, (2) $\binom{n}{m} = \binom{n}{n-m};$ $(3) \quad \sum_{m=0}^{n} \binom{n}{m} \stackrel{def}{=} \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n} = 2^{n};$ $(4) \quad \sum_{m=0}^{n} (-1)^{m} \binom{n}{m} \stackrel{def}{=} \binom{n}{0} - \binom{n}{1} + \dots \pm \binom{n}{n} = 0 \quad if \ n > 0;$ $(5) \quad \sum_{m=0}^{n} m\binom{n}{m} \stackrel{def}{=} \binom{n}{1} + 2\binom{n}{2} + \dots + n\binom{n}{n} = n2^{n-1};$ $(6) \quad \sum_{m=0}^{n} \binom{n}{m}^{2} \stackrel{def}{=} \binom{n}{0}^{2} + \binom{n}{1}^{2} + \dots + \binom{n}{n}^{2} = \binom{2n}{n}.$

Proof.

 $1 \iff 2$. One has $(1+t)^n = (1+t)(1+t)\dots(1+t)$ (n terms); number the factors left to right from 1 to n. Opening brackets one has to choose either 1 or t from each of the n factors. Let $A \subset \{1, 2, ..., n\}$ be the set of numbers of factors from which t was chosen. Such choice gives the term $t^{\#A}$ where #A means the number of elements in A. Now the coefficient at t^m equals the numbers of $A \subset \{1, 2, \ldots, n\}$ such that #A = m.

 $1 \iff 4$. Arrange all the elements $1, 2, \ldots, n$ in some way: $\sigma(1), \sigma(2), \ldots, \sigma(n)$ where $\sigma : \{1, \ldots, n\} \to \{1, \ldots, n\}$ is a bijection, and consider a *m*-element set $\{\sigma(1), \ldots, \sigma(m)\}$. There are totally *n*! arrangements (bijections) σ . A permutation of the first m elements of the arrangement and of its last (n-m) elements will not change the set $\{\sigma(1),\ldots,\sigma(m)\}$, so a given set $\{a_1,\ldots,a_m\}$ can be obtained from m!(n-m)! permutations. Therefore the total number of sets is $\frac{n!}{m!(n-m)!}$.

 $2 \iff 4$. The *m*-th derivative of the two sides of the identity $(1+t)^n = \sum_{k=0}^k \binom{n}{k} t^k$ is $n(n-1) \dots (n-m+1)(1+t)^{n-m} = \sum_{k=m}^n \binom{n}{k} k(k-1) \dots (k-m+1)t^{k-m}$. Taking t = 0 we see that all the terms in the right-hand side, except the very first one, disappear. So t = 0 gives $n(n-1) \dots (n-m+1) = \frac{n!}{(n-m)!} = m!\binom{n}{m}$.

To prove that 3 is equivalent to the other ones it suffices to prove Property 1 for them.

Property 1. For Definition 2: the free term in $(1 + t)^n$ is equal to the value of $(1 + t)^n$ at t = 0, that is, to 1. It means $\binom{n}{0} = 1$. The leading term in $(1 + t)^n$ is, obviously, t^n , which means $\binom{n}{n} = 1$. Consider now the formula $(1 + t)^n = (1 + t) \cdot (1 + t)^{n-1}$. The term $\binom{n}{m}t^m$ in the left-hand side is the sum of two terms in the right-hand side: $1 \cdot \binom{n-1}{m}t^m$ and $t \cdot \binom{n-1}{m-1}t^{m-1}$. Thus one has $\binom{n}{m} = \binom{n-1}{m-1} + \binom{n-1}{m}$ is Property 1.

For Definition 4: denote $b_m^n \stackrel{\text{def}}{=} \frac{n!}{m!(n-m)!}$ Now $b_0^n = \frac{n!}{n!0!} = 1 = \frac{n!}{0!n!} = b_n^n$. Also

$$b_{m-1}^{n-1} + b_m^{n-1} = \frac{(n-1)!}{(m-1)!(n-m)!} + \frac{(n-1)!}{m!(n-m-1)!} = \frac{(n-1)!}{m!(n-m)!}(m+n-m) = \frac{n \cdot (n-1)!}{m!(n-m)!} = b_m^n.$$

Remark. It is often convenient to assume $\binom{n}{m} = 0$ if m < 0 or m > n. This agrees with Definitions 2 and 3 (check!).

For Definition 1: split the set of all *m*-element subsets of $\{1, \ldots, n\}$ into two groups: the subsets containing *n* and the subsets not containing n. If a subset does not contain n then it is a m-element subset of $1, \ldots, (n-1)$; there are $\binom{n-1}{m}$ of them. If a subset contains n then its remaining elements form a (m-1)-element subset of $1, \ldots, (n-1)$, so there are $\binom{n-1}{m-1}$ of them. The total number of all subsets is $\binom{n-1}{m} + \binom{n-1}{m-1}$; but from the other side, it is $\binom{n}{m}$.

Property 2. For Definition 2: one has $(1 + t)^n = t^n \cdot (1 + 1/t)^n$. The $\binom{n}{m}t^m$ in the left-hand side is equal in the right-hand side to t^n multiplied by the term containing $\frac{1}{t^{n-m}}$. This term is $\binom{n}{n-m}\frac{1}{t^{n-m}}$, so $\binom{n}{m} = \binom{n}{n-m}$.

For Definition 1: to any *m*-element subset $A \subseteq \{1, \ldots, n\}$ one can relate its complement $\overline{A} \stackrel{\text{def}}{=} \{1, \ldots, n\} \setminus A;$ the complement contains n-m elements. A itself is determined by its complement (it is the complement of the complement), so $\{1, \ldots, n\}$ has as many *m*-element subsets as (n-m)-element subsets.

For Definition 4: evident. For Definition 3: trivial induction by the number of the row.

Property 3. For Definition 2: substitute t = 1 in the indentity $(1 + t)^n = \binom{n}{0} + \binom{n}{1}t + \dots + \binom{n}{m}t^m + \dots + \binom{n}{n}t^n$.

For Definition 3: it follows from the definition that the sum of the elements of the *n*-th row is twice the sum of the elements of the (n-1)-th row. Since the sum of the elements of the 0-th row is $1 = 2^0$, trivial induction implies that it is 2^n in the *n*-th row.

For Definition 1: to describe a subset of $\{1, \ldots, n\}$ one should say for every its element whether it belongs to a subset or not. So there are n independent choices from 2 variants each; this gives the total number of subsets being 2^n . Since the number of *m*-element subsets is $\binom{n}{m}$ where *m* can be from 0 to *n*, Property 3 follows.

For Definition 4 no proof is known.

Property 4. For Definition 2: substitute t = -1 at $(1 + t)^n = \sum_{m=0}^n {n \choose m} t^m$. For Definition 3: the alternating-sign sum of the elements of the *n*-th row is equal twice the alternating sum of the elements of the (n-1)-th row, provided n > 0 (check!). Now induction on n implies Property 4.

For Definition 1: let $A \subset \{1, \ldots, n\}$; denote $c(A) \stackrel{\text{def}}{=} A \Delta \{n\}$ (symmetric difference, i.e. if A contains n then c(A) is obtained by deletion of n, and if A does not contain n then c(A) is obtained by adding it). The operation c is an involution: c(c(A)) = A, the subsets of $\{1, \ldots, n\}$ are split into nonintersecting pairs $\{A, c(A)\}$. The number of elements in A and c(A) differs by 1 and therefore has opposite parity. So one obtains that $\{1, \ldots, n\}$ has as many subsets A with #A even, as subsets A with #A odd. This implies $\sum_{k=0}^{n/2} \binom{n}{2k} = \sum_{k=0}^{n/2} \binom{n}{2k+1}$, which is equivalent to Property 4.

For Definition 4 no proof is known.

Property 5. For Definition 2: take a derivative of the identity (1) obtaining $n(1+t)^{n-1} = \sum_{m=0}^{n} m\binom{n}{m} t^{m-1}$. Substitution t = 1 gives the required result.

For Definition 3: $\sum_{m=0}^{n} m\binom{n}{m} = \sum_{m=0}^{n} m\binom{n-1}{m} + \sum_{m=0}^{n} m\binom{n-1}{m-1} = \sum_{m=0}^{n} m\binom{n-1}{m} + \sum_{m=0}^{n} (m-1)\binom{n-1}{m-1} + \sum_{m=0}^{n} \binom{n-1}{m-1}$. The first two terms are equal to $(n-1)2^{n-2}$ by induction (note that the summation range here is

irrelevant!), and the third one, to 2^{n-1} as proved above. Totally one has $(n-1)2^{n-2} + (n-1)2^{n-2} + 2^{n-1} = n2^{n-1}$. For Definition 1: $m\binom{n}{m}$ is the number of *m*-element subsets of $\{1, \ldots, n\}$ with one distinguished element. Thus the left-hand side of the Property 5 is equal to the total number of subsets with one distinguished elements. Now take an element to distinguish — this gives n variants of choice — and then take a set (of any size) of the remaining elements, which give 2^{n-1} variants. Totally, $n2^{n-1}$.

Property 6. From Definition 2: consider the identity $(1+t)^n \cdot (1+t)^n = (1+t)^{2n}$. Replace the right-hand side and each of the factors in the left-hand side by the right-hand side of (1):

$$\binom{n}{0} + \binom{n}{1}t + \dots + \binom{n}{n}t^n \cdot \binom{n}{0} + \binom{n}{1}t + \dots + \binom{n}{n}t^n = \binom{2n}{0} + \binom{2n}{1}t + \dots + \binom{2n}{2n}t^{2n}.$$

The right-hand side contains the term $\binom{2n}{n}t^n$. The same power of t in the left-hand side appears as the result of multiplication of the terms $\binom{n}{m}t^m$ and $\binom{n}{n-m}t^{n-m}$ where m can be any number from 0 to n. Therefore one has $\binom{2n}{n} = \sum_{m=0}^{n} \binom{n}{m}\binom{n}{n-m} = \sum_{m=0}^{n} \binom{n}{m}^2$ — the last equality follows from Property 2. From Definition 1: consider any set $A \subset \{1, \ldots, 2n\}$. One has $A = A_1 \cup A_2$ where $A_1 = A \cap \{1, \ldots, n\}$ and

From Definition 1: consider any set $A \subset \{1, \ldots, 2n\}$. One has $A = A_1 \cup A_2$ where $A_1 = A \cap \{1, \ldots, n\}$ and $A_2 = A \cap \{n, \ldots, 2n\}$. The set A is uniquely determined by A_1 and A_2 , which can be any sets containing $m \stackrel{\text{def}}{=} #A_1$ and $n - m = #A_2$ elements. There are $\binom{n}{m}$ possible sets A_1 and $\binom{n}{n-m} = \binom{n}{m}$ possible sets A_2 . Thus there are $\binom{n}{m}^2$ possibilities for A with a fixed m, and Property 6 follows.

Exercises

Problem 1. a) Write the first 10 lines of the Pascal's triangle (numbered 0 to 9) modulo 2, that is, replacing even binomial coefficients by 0, and odd, by 1. b) Prove that if $n = 2^k$ for some integer k then the n-th line of Pascal's triangle modulo 2 looks like 10...01 (all the terms inside are 0). c) Prove that if $n \neq 2^k$ then it is not so: the n-th line contains at least three 1s.

Problem 2. a) Compute for every *n* the sums $\sum_{m=0}^{\infty} \binom{n}{2m} = \binom{n}{0} + \binom{n}{2} + \dots + \binom{n}{2m} + \dots$ and $\sum_{m=0}^{\infty} \binom{n}{2m+1} = \binom{n}{1} + \binom{n}{3} + \dots + \binom{n}{2m+1} + \dots$ Give as many proofs as you can. (Recall that $\binom{n}{m} = 0$ if m > n, so the sums are actually finite.) b*) Compute $\sum_{m=0}^{\infty} \binom{n}{4m}$ and $\sum_{m=0}^{\infty} \binom{n}{3m}$.