5.1. Let X be a topological vector space, let $X_0 \subset X$ be a vector subspace, and let $\pi: X \to X/X_0$ denote the quotient map. Show that

(a) if \mathscr{U} is a neighborhood base at 0 in X, then $\{\pi(U) : U \in \mathscr{U}\}$ is a neighborhood base at 0 in X/X_0 ;

(b) the quotient X/X_0 is Hausdorff if and only if X_0 is closed in X.

5.2. Let X be a locally convex space, P be a directed fundamental family of seminorms on X, and X_0 be a vector subspace of X. Show that the family $\hat{P} = \{\hat{p} : p \in P\}$ of quotient seminorms is a fundamental family on X/X_0 .

5.3. Let X be a topological vector space, let p be a continuous seminorm on X, and let \hat{p} denote the quotient seminorm on $X/\overline{\{0\}}$. Show that $\hat{p}(x + \overline{\{0\}}) = p(x)$ $(x \in X)$.

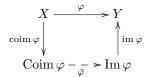
5.4. (a) Show that the kernel of a morphism $\varphi \colon X \to Y$ in the category LCS of all locally convex spaces is the subspace $\varphi^{-1}(0)$, and that the cokernel of φ is the quotient $Y/\varphi(X)$.

(b) Describe kernels and cokernels of morphisms in the category HLCS of all Hausdorff locally convex spaces.

5.5. (a) Show that a morphism φ in LCS is a kernel if and only if it is topologically injective, and that φ is a cokernel if and only if it is open.

(b) Obtain a similar characterization of kernels and cokernels in HLCS.

Let \mathscr{A} be a category having a zero object. Suppose that each morphism in \mathscr{A} has a kernel and a cokernel. We define the *image* (Im φ , im φ) of a morphism φ in \mathscr{A} to be the kernel of the cokernel of φ , and the *coimage* (Coim φ , coim φ) of φ to be the cokernel of the kernel of φ . Thus for each $\varphi \colon X \to Y$ there is a unique $\overline{\varphi} \colon$ Coim $\varphi \to \text{Im } \varphi$ making the following diagram commute:



We say that φ is *strict* if $\overline{\varphi}$ is an isomorphism.

5.6. (a) Describe the image and the coimage of each morphism in the categories LCS and HLCS. (b) Show that a morphism $\varphi \colon X \to Y$ in LCS is strict in the above sense if and only if it is strict as a continuous linear map (see the lectures), i.e., if and only if φ is an open map of X onto $\varphi(X)$. (c) Describe strict morphisms in HLCS.

5.7. Let X be a vector space equipped with the projective locally convex topology generated by a family of linear maps $(\varphi_i \colon X \to X_i)_{i \in I}$, where $(X_i)_{i \in I}$ is a family of locally convex spaces. Show that (a) the projective topology on X is the weakest locally convex topology on X that makes all the maps φ_i continuous;

(b) the projective topology on X is the weakest topology on X that makes all the maps φ_i continuous;

(c) the projective topology on X is a unique locally convex topology on X having the following property: if Y is a locally convex space, then a linear map $\psi: Y \to X$ is continuous if and only if all the maps $\varphi_i \circ \psi: Y \to X_i$ are continuous;

(d) if σ_i is a neighborhood subbase at 0 in X_i $(i \in I)$, then the family $\{\varphi_i^{-1}(U_i) : U_i \in \sigma_i, i \in I\}$ is a neighborhood subbase at 0 in X.