
12.10.2017 Topological vector spaces Exercises for Lecture 3

3.1. Let s be the space of rapidly decreasing sequences (see Exercises for Lecture 2). Show that the
following families of seminorms on s are equivalent:

(1) ∥x∥(∞)
k = supn |xn|nk (k ∈ Z>0);

(2) ∥x∥(1)k =
∑

n |xn|nk (k ∈ Z>0);

(3) ∥x∥(p)k =
(∑

n |xn|pnkp
)1/p

(k ∈ Z>0).

3.2. Sjow that the following families of seminorms on the Schwartz space S (Rn) (see Exercises for
Lecture 2) are equivalent:

(1) ∥f∥α,β = sup
x∈Rn

|xαDβf(x)| (α, β ∈ Zn
>0);

(2) ∥f∥k,β = sup
x∈Rn

∥x∥k|Dβf(x)| (k ∈ Z>0, , β ∈ Zn
>0);

(3) ∥f∥(0)k,β = sup
x∈Rn

(1 + ∥x∥)k|Dβf(x)| (k ∈ Z>0, , β ∈ Zn
>0);

(4) ∥f∥(1)k,β =
∫
Rn(1 + ∥x∥)k|Dβf(x)| dx (k ∈ Z>0, , β ∈ Zn

>0);

(5) ∥f∥(p)k,β =
(∫

Rn(1 + ∥x∥)kp|Dβf(x)|p dx
)1/p

(k ∈ Z>0, , β ∈ Zn
>0).

3.3. Let U be a domain in C, and let O(U) denote the space of holomorphic functions on U . Choose
a compact exhaustion {Ui}i∈N of U (i.e., U =

∪
i Ui, Ui is open, Ui is compact, and Ui ⊂ Ui+1 for all

i). Let p ∈ [1,+∞), and let µ denote the Lebesgue measure on C. Show that the following families
of seminorms on O(U) are equivalent:

(1) ∥f∥K = sup
z∈K

|f(z)| (K ⊂ U is a compact set);

(2) ∥f∥k,ℓ,K = sup
z=x+iy∈K

∂k+ℓf(z)

∂xk ∂yℓ
(K ⊂ U is a compact set, k, ℓ ∈ Z>0);

(3) ∥f∥(1)i =
∫
Ui
|f(z)| dµ(z) (i ∈ N);

(4) ∥f∥(p)i =
(∫

Ui
|f(z)|p dµ(z)

)1/p

(i ∈ N).

The equivalence of (1) and (2) means that the topology of compact convergence and the topology
inherited from C∞(U) are the same on O(U).

3.4. Let DR = {z ∈ C : |z| < R}. Given f ∈ O(DR), let cn(f) = f (n)(0)/n!. Choose p ∈ [1,+∞),
and let µ denote the Lebesgue measure on the circle |z| = r. Show that the following families of
seminorms on O(DR) are equivalent:

(1) ∥f∥K = sup
z∈K

|f(z)| (K ⊂ U is a compact set);

(2) ∥f∥(1)r =
∑∞

n=0 |cn(f)|rn (0 < r < R);

(3) ∥f∥(p)r =
(∑∞

n=0(|cn(f)|rn)p
)1/p

(0 < r < R);
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(4) ∥f∥∞r = sup
n>0

|cn(f)|rn (0 < r < R);

(5) ∥f∥Ir =
∫
|z|=r

|f(z)| dµ(z) (0 < r < R);

(6) ∥f∥I,pr =
(∫

|z|=r
|f(z)|p dµ(z)

)1/p

(0 < r < R).

3.5∗. Let X be a finite-dimensional vector space. Show that there is only one topology on X which
makes X into a Hausdorff topological vector space, and that this topology is determined by any
norm on X. (This result was proved at the lectures in the special case of locally convex topologies.)

3.6∗. Prove that a topological vector space is semimetrizable if and only if its topology is generated
by an F -seminorm. (This result was proved at the lectures in the special case of locally convex
spaces.)

3.7. Let S be an infinite set. Show that there are no continuous norms on KS. As a corollary, KS is
not normable.

3.8. Let X be a noncompact, completely regular (i.e., Tychonoff) topological space. Show that there
are no continuous norms on C(X). As a corollary, C(X) is not normable.

3.9. Let U ⊂ Rn be a nonempty open set. Show that there are no continuous norms on C∞(U). As
a corollary, C∞(U) is not normable.

3.10. Show that the following spaces are not normable, although each of them has a continuous
norm: (a) s; (b) C∞[a, b]; (c) S (Rn); (d) O(U) (where U is a domain in C).

3.11. Prove that the following spaces are metrizable:
(1) C(X), where X is a second countable, locally compact topological space;
(2) C∞(U), where U ⊂ Rn is an open set.

3.12. Let S be a set. Show that KS is metrizable if and only if S is at most countable.

3.13. Show that the strongest locally convex space is metrizable if and only if it is finite-dimensional.

3.14. Let X be a normed space. Show that
(a) the dual space X ′ equipped with the weak∗ topology is metrizable if and only if the dimension
of X is at most countable;
(2) X equipped with the weak topology is metrizable if and only if it is finite-dimensional.
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