2.1. Show that any seminorm p on a vector space X equals the Minkowski functional of the open ball $U_{p}=\{x \in X: p(x)<1\}$ and of the closed ball $\bar{U}_{p}=\{x \in X: p(x) \leqslant 1\}$.
2.2. Let X be a topological vector space, let $V \subset X$ be an absolutely convex neighborhood of 0 , and let p_{V} denote the Minkowski functional of V. Show that $\operatorname{Int} V=\left\{x: p_{V}(x)<1\right\}$ and $\bar{V}=\left\{x: p_{V}(x) \leqslant 1\right\}$. Deduce that $V \mapsto p_{V}$ is a 1-1-correspondence between the collection of all absolutely convex open neighborhoods of 0 and the collection of all continuous seminorms on X. Moreover, the inverse map is given by $p \mapsto U_{p}$.
2.3. Let p and q be seminorms on a vector space. Show that $p \leqslant q$ iff $U_{q} \subset U_{p}$, and that $p \prec q$ iff $U_{q} \prec U_{p}$.

Recall (see the lectures) that the space s of rapidly decreasing sequences is defined by

$$
\begin{equation*}
s=\left\{x=\left(x_{n}\right) \in \mathbb{K}^{\mathbb{N}}:\|x\|_{k}=\sup _{n \in \mathbb{N}}\left|x_{n}\right| n^{k}<\infty \forall k \in \mathbb{Z} \geqslant 0\right\} . \tag{1}
\end{equation*}
$$

The topology on s is given by the seminorms $\|\cdot\|_{k}\left(k \in \mathbb{Z}_{\geqslant 0}\right)$. Similarly, one defines the space $s(\mathbb{Z})$ of rapidly decreasing sequences on \mathbb{Z} (more exactly, we replace \mathbb{N} by \mathbb{Z} and n^{k} by $|n|^{k}$ in (1)).
2.4. Let $\lambda=\left(\lambda_{n}\right) \in \mathbb{K}^{\mathbb{N}}$. Consider the diagonal operator

$$
M_{\lambda}: \mathbb{K}^{\mathbb{N}} \rightarrow \mathbb{K}^{\mathbb{N}}, \quad\left(x_{1}, x_{2}, \ldots\right) \mapsto\left(\lambda_{1} x_{1}, \lambda_{2} x_{2}, \ldots\right)
$$

(a) Show that M_{λ} is continuous.
(b) Find a condition on λ that is equivalent to $M_{\lambda}(s) \subset s$.
(c) Find a condition on λ that is necessary and sufficient for M_{λ} to be a continuous map of s to s.
2.5. Describe all continuous linear functionals on the spaces (a) $\mathbb{K}^{\mathbb{N}} ;$ (b) s.

Recall (see the lectures) that the Schwartz space $\mathscr{S}\left(\mathbb{R}^{n}\right)$ is defined by

$$
\mathscr{S}\left(\mathbb{R}^{n}\right)=\left\{f \in C^{\infty}\left(\mathbb{R}^{n}\right):\|f\|_{\alpha, \beta}=\sup _{x \in \mathbb{R}^{n}}\left|x^{\alpha} D^{\beta} f(x)\right|<\infty \forall \alpha, \beta \in \mathbb{Z}_{\geq 0}^{n}\right\} .
$$

The topology on $\mathscr{S}\left(\mathbb{R}^{n}\right)$ is given by the seminorms $\|\cdot\|_{\alpha, \beta}\left(\alpha, \beta \in \mathbb{Z}_{\geqslant 0}^{n}\right)$.
2.6. (a) Let $U \subset \mathbb{R}^{n}$ be an open set. Consider a differential operator

$$
\begin{equation*}
D=\sum_{|\alpha| \leqslant N} a_{\alpha} D^{\alpha}, \tag{2}
\end{equation*}
$$

where $a_{\alpha} \in C^{\infty}(U)$. Show that D is a continuous operator on $C^{\infty}(U)$.
(b) Find a reasonable condition on $a_{\alpha} \in C^{\infty}\left(\mathbb{R}^{n}\right)$ that is sufficient for D to be a continuous operator on $\mathscr{S}\left(\mathbb{R}^{n}\right)$.
(c) Let us equip the space $\mathbb{K}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ of formal power series with the topology of convergence of each coefficient (in other words, we identify $\mathbb{K}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ with $\mathbb{K}^{\mathbb{Z}_{\geqslant 0}^{n}}$ equipped with the product topology). Show that for each $a_{\alpha} \in \mathbb{K}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ formula (2) defines a continuous operator on $\mathbb{C}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$.
(d) Let $U \subset \mathbb{C}$ be an open set, and let $a_{1}, \ldots, a_{N} \in \mathscr{O}(U)$. Show that the differential operator

$$
\sum_{k=0}^{N} a_{k} \frac{d^{k}}{d z^{k}}
$$

is continuous on $\mathscr{O}(U)$.
2.7. Let $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$, and let μ denote the normalized length measure on \mathbb{T} ("normalized" means that the measure of \mathbb{T} is 1). Show that the Fourier transform

$$
\mathscr{F}: C^{\infty}(\mathbb{T}) \rightarrow s(\mathbb{Z}), \quad(\mathscr{F} f)(n)=\int_{\mathbb{T}} f(z) z^{-n} d \mu(z),
$$

is a topological isomorphism of $C^{\infty}(\mathbb{T})$ onto $s(\mathbb{Z})$.
2.8. Let (X, μ) be a σ-finite measure space, and let $0<p<1$. We define $L^{p}(X, \mu)$ to be the space of (μ-equivalence classes of) measurable functions $f: X \rightarrow \mathbb{K}$ such that $|f|^{p}$ is integrable. Given $f \in L^{p}(X, \mu)$, let

$$
|f|_{p}=\int_{X}|f(x)|^{p} d \mu(x)
$$

(a) Show that $|\cdot|_{p}$ is an F-norm on $L^{p}(X, \mu)$. Thus $L^{p}(X, \mu)$ is a metrizable topological vector space.
(b) Show that the only continuous linear functional on $L^{p}[0,1]$ is identically zero. As a corollary, $L^{p}[0,1]$ is not locally convex.
(c) Can $L^{p}(X, \mu)$ be locally convex and infinite-dimensional?
2.9. Let (X, μ) be a finite measure space. We define $L^{0}(X, \mu)$ to be the space of (μ-equivalence classes of) all measurable functions $f: X \rightarrow \mathbb{K}$. Choose a bounded nondecreasing function $\varphi:[0,+\infty) \rightarrow$ $[0,+\infty)$ satisfyiong the following conditions:

1) $\varphi(s+t) \leqslant \varphi(s)+\varphi(t) \quad(s, t \geqslant 0)$;
2) $\varphi(0)=0$;
3) φ is a homeomorphism between suitable neighborhoods of 0 .

For example, we can let $\varphi(t)=t /(1+t)$ or $\varphi(t)=\min \{t, 1\}$. Given $f \in L^{0}(X, \mu)$, let

$$
|f|_{0}=\int_{X} \varphi(|f(x)|) d \mu(x)
$$

(a) Show that $|\cdot|_{0}$ is an F-norm on $L^{0}(X, \mu)$. Thus $L^{0}(X, \mu)$ is a metrizable topological vector space.
(b) Show that a sequence in $L^{0}(X, \mu)$ converges iff it converges in measure.
(c) Show that the only continuous linear functional on $L^{0}[0,1]$ is identically zero. As a corollary, $L^{0}[0,1]$ is not locally convex.
(d) Can $L^{0}(X, \mu)$ be locally convex and infinite-dimensional?

