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4. PARACOMPACTNESS AND PARTITION OF UNITY

Abstract. This problem set contains proofs of two important properties of smooth manifolds: paracompactness
and the theorem about partition of unity. Proofs are partly written and partly given as exercises.

1. Paracompactness.

Exercise 1. Prove that if M ⊂ Rn is compact then for any a ∈ Rn \M the distance d(a;M) def= infb∈M |a− b| > 0.
Exercise 2. Suppose a manifold M has a countable pre-atlas. (a) Prove that M possesses a countable pre-atlas
(U�; V�; x�) such that all closures U� ⊂ M and V� ⊂ Rn are compact. (b) Prove that M can be represented as a
union ⋃

nMn = M where M1 ⊂M2 ⊂ · · · ⊂M are all open, and for any n the closure Mn ⊂Mn+1 is compact.
Hint . In 2(a) �rst �nd a pre-atlas where all V� are bounded (hence, V� are compact). Then consider sets
A�;k def= {a ∈ V� | d(a; @V�) > 1=k} and B�;k def= x−1

� (Ak).
Theorem 1. Let M be a smooth manifold with a countable pre-atlas, and {P�} be its cover by open sets: M =⋃
� P�. Then there exist open sets Q�� (where � runs, for each �, through an index set, depending on �) such that

(1) Q�� ⊂ P� for all � and �.
(2) M = ⋃

�;� Q�;�.
(3) For every point a ∈M there exists an open set U 3 a intersecting only �nitely many sets Q�;�.

In short: any open cover of a manifold admits a locally �nite re�nement.
Proof. Take the sequence of open sets M1 ⊂M2 ⊂ · · · ⊂M from Exercise 2(b). For every k the set Mk \Mk−1 is
compact, so it can be covered by a �nite collection of the sets P�(k)

1
; : : : ; P�(k)

rk
. Take Q�(k)

i ;k
def= (P�(k)

i
\Mk−2)∩Mk+1.

All the sets Q�;k are open, and Q�;k ⊂ P� for all � and k. The sets Q�(k)
1 ;k; : : : ; Q�(k)

rk ;k
cover Mk \Mk−1 and are

contained in Mk+1 \Mk−1. Hence, {Q�;k} is locally �nite. ¤
2. Partition of unity.

Exercise 3. (a) Prove that the function f : R→ R given by f(t) = e−1=t2 for t 6= 0 and f(0) def= 0 has continuous
derivative f (n) of any order n, and for t 6= 0 one has f (n)(t) = Pn(t)e−1=t2 for some rational function Pn, and
f (n)(0) = 0 for all n. (b) Let r > 0. Prove that the function gr : Rn → R de�ned as gr(x) def= f(r2 − |x|2) for
|x| < r and gr(x) = 0 for |x| ≥ r is smooth.

Exercise 4. (a) Let M ⊂ Rn be a compact. Prove that the function 'M;r(x) def=
R
M gr(y−x) dyR
|x|≤r gr(y) dy is smooth, where

gr is the function of Exercise 3(b). Also prove that the support supp'M;r
def= {x ∈ Rn | 'M;r(x) 6= 0} is compact.

(b) Prove that 0 ≤ 'M;r(x) ≤ 1 for all x ∈ Rn, and that Ar def= '−1
M;r(1) ⊂ M . (c) Prove that Ar ⊂ Ar′ if r > r′.

Prove that if M is the closure of its own interior then M = ⋃
r>0Ar.

Theorem 2 (partition of unity). Let manifold M have a countable pre-atlas, and {P�} be an open cover of M .
Then there exist smooth functions %� : M → R (called a partition of unity subordinate to the cover {P�}) such that

• %�(x) ≥ 0 for all x ∈M .
• supp(%�) ⊂ P� for every �.
• For every a ∈M there exists an open subset U 3 a intersecting supports of only �nitely many %�.
• ∑

� %� ≡ 1.
Exercise 5. (a) Prove that it su�ces to prove a weaker statement, that ∑

� %�(a) > 0 for any a ∈M . (b) Suppose
that Theorem 2 is valid for a re�nement Q�� of the cover P�. Prove that it is valid for the cover P� itself.
(c) Suppose Theorem 2 is proved for any countable locally �nite cover {P�} such that all P� are charts of a
pre-atlas (P�; V�; x�) where all the closures P� ⊂ M and V� ⊂ Rn are compact. Prove then Theorem 2 for any
cover.
Proof of Theorem 2. Let P1; P2; : : : be a cover described in Exercise 5(c); prove now that the set R1

def= x1(P1 \⋃
� 6=1 P�) is compact. If it is not the case, R1 contains an in�nite subset A ⊂ R1 having no accumulation points.

Once x−1
1 (A) ⊂ P1, and P1 is a compact, x−1

1 (A) has an accumulation point b ∈ M . It means that b ∈ Pi for
1



some i. If i = 1 then x1(b) ∈ R1 is an accumulation point for A, contrary to its construction. So i > 1, and the
intersection Pi ∩ x−1

1 (A) is nonempty. Therefore A ∩ x1(Pi ∩ P1) is also nonempty | contrary to the assumption
that A ⊂ R1.

The set R1 is compact, so similar to Exercise 1 one has " def= d(R1; @Q1) > 0. The set R̃1 = ⋃
x∈R1

B(x; "=2) ⊂ Q1

has positive Lebesgue measure. At the same time B(x; "=2) ⊂ Q1 for all x ∈ R̃1. Take a function %1
def= 'R1;"=2 ∈

C∞(Rn), obtained like in Exercise 4(a).
Denote now W1 = {a ∈M | %1(a) > 0}. By construction if '1(q) = 0 then q ∈ x1(P1 ∩Pi) for some i > 1. Then

the sets W1; P2; P3; : : : form a cover of M .
De�ne the functions %n, n > 1, in a similar fashion where Rn is the set xn(Pn \

⋃
i>n P� \

⋃
j<nWj). The

construction is valid because for any n the sets W1; : : : ;Wn−1; Pn; Pn+1 is a cover of M . This implies the inequality∑
� %� > 0. ¤

Exercise 6. Find as many mistakes as possible in the preceding proof and correct them.
3. Algebra C∞(M) of smooth functions.
Exercise 7. Let M be a compact manifold. Show that if elements of an ideal I ⊆ C∞(M) (not necessarily closed)
have no common zeros then I = C∞(M). Derive from this that any maximal ideal in C∞(M) is Ja for some
a ∈M .

Let M be not compact, and let I ⊂ C∞(M) be the set of all functions ' such that the support supp' is compact.
Exercise 8. (a) Prove that I is an ideal, I 6= C∞(M) and the functions ' ∈ I have no common zeros. Thus,
Exercise 7 does not hold for non-compact manifolds. (b) Prove that M has a maximal ideal which is not Ja for
any a. Is this ideal closed?


