4. PARACOMPACTNESS AND PARTITION OF UNITY

ABSTRACT. This problem set contains proofs of two important properties of smooth manifolds: paracompactness and the theorem about partition of unity. Proofs are partly written and partly given as exercises.

1. Paracompactness.

Exercise 1. Prove that if $M \subset \mathbb{R}^n$ is compact then for any $a \in \mathbb{R}^n \setminus M$ the distance $d(a, M) \stackrel{\text{def}}{=} \inf_{b \in M} |a - b| > 0$.

Exercise 2. Suppose a manifold M has a countable pre-atlas. (a) Prove that M possesses a countable pre-atlas $(U_{\alpha}, V_{\alpha}, x_{\alpha})$ such that all closures $\overline{U_{\alpha}} \subset M$ and $\overline{V_{\alpha}} \subset \mathbb{R}^n$ are compact. (b) Prove that M can be represented as a union $\bigcup_n M_n = M$ where $M_1 \subset M_2 \subset \cdots \subset M$ are all open, and for any n the closure $\overline{M_n} \subset M_{n+1}$ is compact.

Hint. In 2(a) first find a pre-atlas where all V_{α} are bounded (hence, $\overline{V_{\alpha}}$ are compact). Then consider sets $A_{\alpha,k} \stackrel{\text{def}}{=} \{a \in V_{\alpha} \mid d(a, \partial V_{\alpha}) > 1/k\}$ and $B_{\alpha,k} \stackrel{\text{def}}{=} x_{\alpha}^{-1}(A_k)$.

Theorem 1. Let M be a smooth manifold with a countable pre-atlas, and $\{P_{\alpha}\}$ be its cover by open sets: $M = \bigcup_{\alpha} P_{\alpha}$. Then there exist open sets $Q_{\alpha\beta}$ (where β runs, for each α , through an index set, depending on α) such that

- (1) $Q_{\alpha\beta} \subset P_{\alpha}$ for all α and β .
- (2) $M = \bigcup_{\alpha,\beta} Q_{\alpha,\beta}$.
- (3) For every point $a \in M$ there exists an open set $U \ni a$ intersecting only finitely many sets $Q_{\alpha,\beta}$.

In short: any open cover of a manifold admits a locally finite refinement.

Proof. Take the sequence of open sets $M_1 \subset M_2 \subset \cdots \subset M$ from Exercise 2(b). For every k the set $\overline{M_k} \setminus M_{k-1}$ is compact, so it can be covered by a finite collection of the sets $P_{\alpha_1^{(k)}}, \ldots, P_{\alpha_{r_k}^{(k)}}$. Take $Q_{\alpha_i^{(k)}, k} \stackrel{\text{def}}{=} (P_{\alpha_i^{(k)}} \setminus \overline{M_{k-2}}) \cap M_{k+1}$. All the sets $Q_{\alpha,k}$ are open, and $Q_{\alpha,k} \subset P_{\alpha}$ for all α and k. The sets $Q_{\alpha_1^{(k)}, k}, \ldots, Q_{\alpha_{r_k}^{(k)}, k}$ cover $\overline{M_k} \setminus M_{k-1}$ and are contained in $M_{k+1} \setminus \overline{M_{k-1}}$. Hence, $\{Q_{\alpha,k}\}$ is locally finite.

2. Partition of unity.

Exercise 3. (a) Prove that the function $f : \mathbb{R} \to \mathbb{R}$ given by $f(t) = e^{-1/t^2}$ for $t \neq 0$ and $f(0) \stackrel{\text{def}}{=} 0$ has continuous derivative $f^{(n)}$ of any order n, and for $t \neq 0$ one has $f^{(n)}(t) = P_n(t)e^{-1/t^2}$ for some rational function P_n , and $f^{(n)}(0) = 0$ for all n. (b) Let r > 0. Prove that the function $g_r : \mathbb{R}^n \to \mathbb{R}$ defined as $g_r(x) \stackrel{\text{def}}{=} f(r^2 - |x|^2)$ for |x| < r and $g_r(x) = 0$ for $|x| \ge r$ is smooth.

Exercise 4. (a) Let $M \subset \mathbb{R}^n$ be a compact. Prove that the function $\varphi_{M,r}(x) \stackrel{\text{def}}{=} \frac{\int_M g_r(y-x) \, dy}{\int_{|x| \leq r} g_r(y) \, dy}$ is smooth, where g_r is the function of Exercise 3(b). Also prove that the support $\sup \varphi_{M,r} \stackrel{\text{def}}{=} \frac{\int_M g_r(y-x) \, dy}{\{x \in \mathbb{R}^n \mid \varphi_{M,r}(x) \neq 0\}}$ is compact. (b) Prove that $0 \leq \varphi_{M,r}(x) \leq 1$ for all $x \in \mathbb{R}^n$, and that $A_r \stackrel{\text{def}}{=} \varphi_{M,r}^{-1}(1) \subset M$. (c) Prove that $A_r \subset A_{r'}$ if r > r'. Prove that if M is the closure of its own interior then $M = \bigcup_{r>0} A_r$.

Theorem 2 (partition of unity). Let manifold M have a countable pre-atlas, and $\{P_{\alpha}\}$ be an open cover of M. Then there exist smooth functions $\varrho_{\alpha}: M \to \mathbb{R}$ (called a partition of unity subordinate to the cover $\{P_{\alpha}\}$) such that

- $\varrho_{\alpha}(x) \geq 0$ for all $x \in M$.
- $\operatorname{supp}(\varrho_{\alpha}) \subset P_{\alpha}$ for every α .
- For every $a \in M$ there exists an open subset $U \ni a$ intersecting supports of only finitely many ϱ_{α} .
- $\sum_{\alpha} \varrho_{\alpha} \equiv 1.$

Exercise 5. (a) Prove that it suffices to prove a weaker statement, that $\sum_{\alpha} \rho_{\alpha}(a) > 0$ for any $a \in M$. (b) Suppose that Theorem 2 is valid for a refinement $Q_{\alpha\beta}$ of the cover P_{α} . Prove that it is valid for the cover P_{α} itself. (c) Suppose Theorem 2 is proved for any countable locally finite cover $\{P_{\alpha}\}$ such that all P_{α} are charts of a pre-atlas $(P_{\alpha}, V_{\alpha}, x_{\alpha})$ where all the closures $\overline{P_{\alpha}} \subset M$ and $\overline{V_{\alpha}} \subset \mathbb{R}^{n}$ are compact. Prove then Theorem 2 for any cover.

Proof of Theorem 2. Let P_1, P_2, \ldots be a cover described in Exercise 5(c); prove now that the set $R_1 \stackrel{\text{def}}{=} x_1(P_1 \setminus \bigcup_{\beta \neq 1} P_\beta)$ is compact. If it is not the case, R_1 contains an infinite subset $A \subset R_1$ having no accumulation points. Once $x_1^{-1}(A) \subset \overline{P_1}$, and $\overline{P_1}$ is a compact, $x_1^{-1}(A)$ has an accumulation point $b \in M$. It means that $b \in P_i$ for some *i*. If i = 1 then $x_1(b) \in R_1$ is an accumulation point for A, contrary to its construction. So i > 1, and the intersection $P_i \cap x_1^{-1}(A)$ is nonempty. Therefore $A \cap x_1(P_i \cap P_1)$ is also nonempty — contrary to the assumption that $A \subset R_1$.

The set $\overline{R_1}$ is compact, so similar to Exercise 1 one has $\varepsilon \stackrel{\text{def}}{=} d(R_1, \partial Q_1) > 0$. The set $\overline{R_1} = \bigcup_{x \in R_1} \overline{B}(x, \varepsilon/2) \subset Q_1$ has positive Lebesgue measure. At the same time $B(x, \varepsilon/2) \subset Q_1$ for all $x \in \widetilde{R_1}$. Take a function $\varrho_1 \stackrel{\text{def}}{=} \varphi_{R_1, \varepsilon/2} \in C^{\infty}(\mathbb{R}^n)$, obtained like in Exercise 4(a).

Denote now $W_1 = \{a \in M \mid \varrho_1(a) > 0\}$. By construction if $\varphi_1(q) = 0$ then $q \in x_1(P_1 \cap P_i)$ for some i > 1. Then the sets W_1, P_2, P_3, \ldots form a cover of M.

Define the functions ρ_n , n > 1, in a similar fashion where R_n is the set $x_n(P_n \setminus \bigcup_{i>n} P_\beta \setminus \bigcup_{j<n} W_j)$. The construction is valid because for any n the sets $W_1, \ldots, W_{n-1}, P_n, P_{n+1}$ is a cover of M. This implies the inequality $\sum_{\alpha} \rho_{\alpha} > 0$.

Exercise 6. Find as many mistakes as possible in the preceding proof and correct them.

3. Algebra $C^{\infty}(M)$ of smooth functions.

Exercise 7. Let M be a compact manifold. Show that if elements of an ideal $I \subseteq C^{\infty}(M)$ (not necessarily closed) have no common zeros then $I = C^{\infty}(M)$. Derive from this that any maximal ideal in $C^{\infty}(M)$ is \mathcal{J}_a for some $a \in M$.

Let M be not compact, and let $I \subset C^{\infty}(M)$ be the set of all functions φ such that the support supp φ is compact.

Exercise 8. (a) Prove that I is an ideal, $I \neq C^{\infty}(M)$ and the functions $\varphi \in I$ have no common zeros. Thus, Exercise 7 does not hold for non-compact manifolds. (b) Prove that M has a maximal ideal which is not \mathcal{J}_a for any a. Is this ideal closed?