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LECTURE 9

Abstract. Poincar�e's lemma and degree of a smooth map.

A k-form ! is called closed if d! = 0. The form is called exact if there exists a (k− 1)-form � such that ! = d�.
Example 1. A 0-form (i.e. a smooth function) f is closed if and only if it is locally constant, that is, constant on
every connected component of the manifold M . A nonzero 0-form cannot be exact (because there are no −1-forms).
Example 2. Any n-form on a n-manifold M is closed (because there are no (n+ 1)-forms on M).

An exact form is always closed because d2 = 0. The converse is not always true: let ! be a n-form on a compact
n-manifold M ; it is closed by Example 2. If ! = d� then

∫
M ! = 0 by Stokes' theorem. So if

∫
M ! 6= 0 (which is

true, for example, for a volume form on Sn) then ! is not exact.
Theorem 1 (Poincar�e's lemma). Let ! be a closed k-form on Rn with 1 ≤ k ≤ n. Then ! is exact.
Proof. Induction by n. For n = 1 one has k = 1 and ! = f(x) dx for some smooth function f : R1 → R. This form
is closed by Example 2; it is also exact: ! = dg where g(x) def=

∫ x
0 f(t) dt.

Let now the theorem be proved for Rn−1. Represent Rn = R1×Rn−1 and denote the coordinate in R1 by t and
the coordinates in Rn−1, by x = (x1; : : : ; xn−1). Then ! = !1(t; x) + dt ∧ !2(t; x) where the k-form !1 and the
(k − 1)-form !2 do not contain dt.

One has d! = dx!1 + dt ∧ @!1
@t − dt ∧ dx!2 where dx is the exterior derivative with respect to the x variables,

that is, the exterior derivative on the manifold (a hyperplane) Mt = {t} × Rn−1 ⊂ Rn; once the forms !1 and !2
do not contain dt, they can be considered as forms on Mt. (The partial derivative @

@t is meant as usual: !1 is a
map from R1 to the vector space 
k(Rn−1) of the k-forms in Rn−1, so one can take a derivative.) It follows from
d! = 0 that dx!1 = 0 and @!1

@t = dx!2.
Let � = �1 + dt∧ �2 be a (k− 1)-form where �1 and �2 do not contain dt. The equation d� = ! is equivalent to

dx�1 = !1 and dx�2 = @�1
@t − !2. Since dx!1 = 0 the equation dx�1 = !1 is solvable on any hyperplane Mt = Rn−1

by the induction hypothesis; take a solution smooth in t. Now dx
(@�1
@t − !2

)
= @

@tdx�1 − dx!2 = @!1
@t − dx!2 = 0,

hence the equation dx�2 = @�1
@t − !2 is also solvable by the induction hypothesis. ¤

The situation is somewhat di�erent if we limit our considerations to the forms with the compact support.
Consider only the top degree forms:
Proposition 1. Let ! be a n-form on Rn with supp! ⊂ (0; 1)n. The equality

∫
Rn ! = 0 takes place if and only if

there exists a (n− 1)-form � such that d� = ! and supp � ⊂ (0; 1)n.
Proof. Let the form � exist; then by Stokes' theorem

∫
Rn ! =

∫
Rn d� = 0.

The converse statement for n = 1 is proved similar to the induction base in the Poincar�e's lemma: if ! = f(t) dt
with supp f ⊂ (0; 1) and

∫ 1
0 f(t) dt = 0 then ! = dg where g(x) def=

∫ x
0 f(t) dt; if x ≥ 1 then g(x) =

∫ 1
0 f(t) dt = 0,

so supp g ⊂ (0; 1).
Let now n > 1 and ! = f(x; t) dt∧dx where x = (x1; : : : ; xn−1) and dx stands for dx1∧· · ·∧dxn−1; suppose that∫ 1

0 : : :
∫ 1

0 f(x; t) dtdx = 0. Take � def=
(∫ 1

0 f(x; t) dt
)
dx. Apparently, supp! ⊂ (0; 1)n−1 and

∫
Rn−1 � = 0. Induction

by n shows that there exists a (n− 2)-form  on Rn−1 such that � = d and supp ⊂ (0; 1)n−1.
Let ' be the function of 1 variable such that supp' ⊂ (0; 1) and

∫ 1
0 '(�) d� = 1. Take now Consider now the

form
� =

(∫ t

0

(
f(x; s)− '(s)

∫ 1

0
f(x; �) d�

)
ds

)
dx− '(t)dt ∧  :

It is easy to check that supp � ⊂ (0; 1)n; one has also d� = f(x; t) dt∧dx−'′(t)(∫ 1
0 f(x; s) ds

)
dt∧dx+'′(t)dt∧d =

f(x; t) dt ∧ dx = ! because d = � =
(∫ 1

0 f(x; s) ds
)
dx. ¤

Let f : M → N be a smooth map between oriented manifolds of the same dimension n. For p ∈ M let U ⊂ M
be a chart containing p and W ⊂ N , a chart containing f(p); the corresponding coordinates are x and y. Let the
point p be regular, that is, f ′(p) : TpM → Tf(p)N be nondegenerate, so det(y ◦ f ◦ x−1)′(x(p)) 6= 0. If ~U , ~W are
other charts containing p and f(p), and ~x, ~y are the corresponding coordinates with the transition maps ' and  ,
respectively, then det(~y ◦ f ◦ ~x−1)′(~x(p)) = det(' ◦ y ◦ f ◦ x−1 ◦  )′(~x(p)) = det'′ det ′ det(y ◦ f ◦ x−1)′(x(p)).
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The atlases in M and N are oriented, so det'′; det ′ > 0, and det(~y ◦ f ◦ ~x−1)′(~x(p)) and det(y ◦ f ◦ x−1)′(x(p))
have the same sign. This sign is called the sign of the regular point p with respect to the map f and is denoted
sign(p; f).

Let M be compact. Take a point a ∈ N and let U ⊂ N be an open subset di�eomorphic to (0; 1)n (that
is, to Rn) such that a ∈ U . Consider a n-form ! on N with the support supp! ⊂ U and

∫
N ! = 1. Denote

deg(f; a; !) def=
∫
M f∗!.

Theorem 2. The number deg(f; a; !) = deg(f; a) does not depend on the choice of a particular form !. The
map a 7→ deg(f; a) is locally constant; hence if N is connected then deg(f; a) = deg(f) does not depend on a
either. If a is a regular value of f (that is, any point p ∈ f−1(a) is regular with respect to f) then deg(f; a) =∑
p∈f−1(a) sign(p; f) ∈ Z.

Proof. Let !1 be another form on N with the required properties. Then
∫
N (! − !1) = 0. The forms ! and !1

are de�ned on U = Rn; thus by Proposition 1 there exists a (n − 1)-form � such that ! = !1 + d� and supp � is
compact. This implies

∫
M f∗! =

∫
M f∗!1 +

∫
M f∗d� =

∫
M f∗!1 +

∫
M df∗� =

∫
M f∗!1 by the Stokes' theorem.

If a point a1 is su�ciently close to a then one can choose a common U such that a; a1 ∈ U and one ! with
supp! ⊂ U . Then deg(f; a) = deg(f; a; !) = deg(f; a1; !) = deg(f; a1), that is, the function deg(f; a) is locally
constant on N . If N is connected then deg(f; a) is constant.

Let now a be a regular value of f . By the inverse function theorem, for every b ∈ f−1(a) there exists a
neighbourhood Ub 3 b mapped di�eomorphically by f to a neighbourhood of a and therefore containing no points
of f−1(a) other than b. Thus f−1(a) ⊂ N is discrete; since N is compact, it means that f−1(a) = {b1; : : : ; bN} is
�nite. Denote Ui def= Ubi . The set W def= ⋃

i f(Ui) 3 a is open; without loss of generality it is a chart.
Let supp! ⊂ W , then f∗! = ∑N

i=1
(
f |Ui

)∗ !, and deg(f) =
∫
M f∗! = ∑N

i=1
∫
M

(
f |Ui

)∗ ! = ∑N
i=1

∫
Ui f

∗! =∑N
i=1 sign(bi; f)

∫
N ! = ∑N

i=1 sign(bi; f). ¤
Corollary 1. If M is compact and oriented and N is connected and oriented then the sum ∑

b∈f−1(a) sign(b; f) is
the same for any regular value a of f .

If f−1(a) = ∅ then a is a regular value with deg(f; a) = 0. So, Corollary 1 implies
Corollary 2. If M is compact and oriented and N is connected and oriented and deg(f) 6= 0 then f(M) = N . In
particular, deg(f) 6= 0 is possible only if N is compact.


