LECTURE 9

ABSTRACT. Poincaré's lemma and degree of a smooth map.

A k-form ω is called *closed* if $d\omega = 0$. The form is called *exact* if there exists a (k-1)-form ν such that $\omega = d\nu$.

Example 1. A 0-form (i.e. a smooth function) f is closed if and only if it is locally constant, that is, constant on every connected component of the manifold M. A nonzero 0-form cannot be exact (because there are no -1-forms).

Example 2. Any n-form on a n-manifold M is closed (because there are no (n+1)-forms on M).

An exact form is always closed because $d^2 = 0$. The converse is not always true: let ω be a *n*-form on a compact *n*-manifold M; it is closed by Example 2. If $\omega = d\nu$ then $\int_M \omega = 0$ by Stokes' theorem. So if $\int_M \omega \neq 0$ (which is true, for example, for a volume form on S^n) then ω is not exact.

Theorem 1 (Poincaré's lemma). Let ω be a closed k-form on \mathbb{R}^n with $1 \leq k \leq n$. Then ω is exact.

Proof. Induction by n. For n = 1 one has k = 1 and $\omega = f(x) dx$ for some smooth function $f : \mathbb{R}^1 \to \mathbb{R}$. This form is closed by Example 2; it is also exact: $\omega = dg$ where $g(x) \stackrel{\text{def}}{=} \int_0^x f(t) dt$. Let now the theorem be proved for \mathbb{R}^{n-1} . Represent $\mathbb{R}^n = \mathbb{R}^1 \times \mathbb{R}^{n-1}$ and denote the coordinate in \mathbb{R}^1 by t and

the coordinates in \mathbb{R}^{n-1} , by $x = (x_1, \ldots, x_{n-1})$. Then $\omega = \omega_1(t, x) + dt \wedge \omega_2(t, x)$ where the k-form ω_1 and the (k-1)-form ω_2 do not contain dt.

One has $d\omega = d_x \omega_1 + dt \wedge \frac{\partial \omega_1}{\partial t} - dt \wedge d_x \omega_2$ where d_x is the exterior derivative with respect to the x variables, that is, the exterior derivative on the manifold (a hyperplane) $M_t = \{t\} \times \mathbb{R}^{n-1} \subset \mathbb{R}^n$; once the forms ω_1 and ω_2 do not contain dt, they can be considered as forms on M_t . (The partial derivative $\frac{\partial}{\partial t}$ is meant as usual: ω_1 is a map from \mathbb{R}^1 to the vector space $\Omega^k(\mathbb{R}^{n-1})$ of the k-forms in \mathbb{R}^{n-1} , so one can take a derivative.) It follows from $d\omega = 0$ that $d_x \omega_1 = 0$ and $\frac{\partial \omega_1}{\partial t} = d_x \omega_2$.

Let $\nu = \nu_1 + dt \wedge \nu_2$ be a (k-1)-form where ν_1 and ν_2 do not contain dt. The equation $d\nu = \omega$ is equivalent to $d_x\nu_1 = \omega_1$ and $d_x\nu_2 = \frac{\partial\nu_1}{\partial t} - \omega_2$. Since $d_x\omega_1 = 0$ the equation $d_x\nu_1 = \omega_1$ is solvable on any hyperplane $M_t = \mathbb{R}^{n-1}$ by the induction hypothesis; take a solution smooth in t. Now $d_x\left(\frac{\partial\nu_1}{\partial t} - \omega_2\right) = \frac{\partial}{\partial t}d_x\nu_1 - d_x\omega_2 = \frac{\partial\omega_1}{\partial t} - d_x\omega_2 = 0$, hence the equation $d_x \nu_2 = \frac{\partial \nu_1}{\partial t} - \omega_2$ is also solvable by the induction hypothesis. \Box

The situation is somewhat different if we limit our considerations to the forms with the compact support. Consider only the top degree forms:

Proposition 1. Let ω be a n-form on \mathbb{R}^n with supp $\omega \subset (0,1)^n$. The equality $\int_{\mathbb{R}^n} \omega = 0$ takes place if and only if there exists a (n-1)-form ν such that $d\nu = \omega$ and $\operatorname{supp} \nu \subset (0,1)^n$.

Proof. Let the form ν exist; then by Stokes' theorem $\int_{\mathbb{R}^n} \omega = \int_{\mathbb{R}^n} d\nu = 0$. The converse statement for n = 1 is proved similar to the induction base in the Poincaré's lemma: if $\omega = f(t) dt$ with supp $f \subset (0,1)$ and $\int_0^1 f(t) dt = 0$ then $\omega = dg$ where $g(x) \stackrel{\text{def}}{=} \int_0^x f(t) dt$; if $x \ge 1$ then $g(x) = \int_0^1 f(t) dt = 0$, so supp $g \subset (0, 1)$.

Let now n > 1 and $\omega = f(x,t) dt \wedge dx$ where $x = (x_1, \ldots, x_{n-1})$ and dx stands for $dx_1 \wedge \cdots \wedge dx_{n-1}$; suppose that $\int_0^1 \dots \int_0^1 f(x,t) dt dx = 0. \text{ Take } \mu \stackrel{\text{def}}{=} \left(\int_0^1 f(x,t) dt \right) dx. \text{ Apparently, supp } \omega \subset (0,1)^{n-1} \text{ and } \int_{\mathbb{R}^{n-1}} \mu = 0. \text{ Induction by } n \text{ shows that there exists a } (n-2) \text{-form } \psi \text{ on } \mathbb{R}^{n-1} \text{ such that } \mu = d\psi \text{ and supp } \psi \subset (0,1)^{n-1}.$

Let φ be the function of 1 variable such that supp $\varphi \subset (0,1)$ and $\int_0^1 \varphi(\tau) d\tau = 1$. Take now Consider now the form

$$\nu = \left(\int_0^t \left(f(x,s) - \varphi(s)\int_0^1 f(x,\tau)\,d\tau\right)\,ds\right)\,dx - \varphi(t)dt \wedge \psi.$$

It is easy to check that $\operatorname{supp} \nu \subset (0,1)^n$; one has also $d\nu = f(x,t) dt \wedge dx - \varphi'(t) \left(\int_0^1 f(x,s) ds \right) dt \wedge dx + \varphi'(t) dt \wedge d\psi = 0$ $f(x,t) dt \wedge dx = \omega$ because $d\psi = \mu = \left(\int_0^1 f(x,s) ds\right) dx$.

Let $f: M \to N$ be a smooth map between oriented manifolds of the same dimension n. For $p \in M$ let $U \subset M$ be a chart containing p and $W \subset N$, a chart containing f(p); the corresponding coordinates are x and y. Let the point p be regular, that is, $f'(p): T_p M \to T_{f(p)} N$ be nondegenerate, so $\det(y \circ f \circ x^{-1})'(x(p)) \neq 0$. If \tilde{U}, \tilde{W} are other charts containing p and f(p), and \tilde{x}, \tilde{y} are the corresponding coordinates with the transition maps φ and ψ , respectively, then $\det(\tilde{y} \circ f \circ \tilde{x}^{-1})'(\tilde{x}(p)) = \det(\varphi \circ y \circ f \circ x^{-1} \circ \psi)'(\tilde{x}(p)) = \det\varphi' \det\psi' \det(y \circ f \circ x^{-1})'(x(p)).$ The atlases in M and N are oriented, so det φ' , det $\psi' > 0$, and det $(\tilde{y} \circ f \circ \tilde{x}^{-1})'(\tilde{x}(p))$ and det $(y \circ f \circ x^{-1})'(x(p))$ have the same sign. This sign is called the sign of the regular point p with respect to the map f and is denoted sign(p, f).

Let M be compact. Take a point $a \in N$ and let $U \subset N$ be an open subset diffeomorphic to $(0,1)^n$ (that is, to \mathbb{R}^n) such that $a \in U$. Consider a *n*-form ω on N with the support supp $\omega \subset U$ and $\int_N \omega = 1$. Denote $\deg(f, a, \omega) \stackrel{\text{def}}{=} \int_M f^* \omega$.

Theorem 2. The number $\deg(f, a, \omega) = \deg(f, a)$ does not depend on the choice of a particular form ω . The map $a \mapsto \deg(f, a)$ is locally constant; hence if N is connected then $\deg(f, a) = \deg(f)$ does not depend on a either. If a is a regular value of f (that is, any point $p \in f^{-1}(a)$ is regular with respect to f) then $\deg(f, a) = \sum_{p \in f^{-1}(a)} \operatorname{sign}(p, f) \in \mathbb{Z}$.

Proof. Let ω_1 be another form on N with the required properties. Then $\int_N (\omega - \omega_1) = 0$. The forms ω and ω_1 are defined on $U = \mathbb{R}^n$; thus by Proposition 1 there exists a (n-1)-form ν such that $\omega = \omega_1 + d\nu$ and $\operatorname{supp} \nu$ is compact. This implies $\int_M f^* \omega = \int_M f^* \omega_1 + \int_M f^* d\nu = \int_M f^* \omega_1 + \int_M f^* \omega_1 +$

compact. This implies $\int_M f^* \omega = \int_M f^* \omega_1 + \int_M f^* d\nu = \int_M f^* \omega_1 + \int_M df^* \nu = \int_M f^* \omega_1$ by the Stokes' theorem. If a point a_1 is sufficiently close to a then one can choose a common U such that $a, a_1 \in U$ and one ω with $\sup \omega \subset U$. Then $\deg(f, a) = \deg(f, a, \omega) = \deg(f, a_1, \omega) = \deg(f, a_1)$, that is, the function $\deg(f, a)$ is locally constant on N. If N is connected then $\deg(f, a)$ is constant.

Let now a be a regular value of f. By the inverse function theorem, for every $b \in f^{-1}(a)$ there exists a neighbourhood $U_b \ni b$ mapped diffeomorphically by f to a neighbourhood of a and therefore containing no points of $f^{-1}(a)$ other than b. Thus $f^{-1}(a) \subset N$ is discrete; since N is compact, it means that $f^{-1}(a) = \{b_1, \ldots, b_N\}$ is finite. Denote $U_i \stackrel{\text{def}}{=} U_{b_i}$. The set $W \stackrel{\text{def}}{=} \bigcup_i f(U_i) \ni a$ is open; without loss of generality it is a chart.

finite. Denote $U_i \stackrel{\text{def}}{=} U_{b_i}$. The set $W \stackrel{\text{def}}{=} \bigcup_i f(U_i) \ni a$ is open; without loss of generality it is a chart. Let $\operatorname{supp} \omega \subset W$, then $f^*\omega = \sum_{i=1}^N (f|_{U_i})^* \omega$, and $\operatorname{deg}(f) = \int_M f^*\omega = \sum_{i=1}^N \int_M (f|_{U_i})^* \omega = \sum_{i=1}^N \int_{U_i} f^*\omega = \sum_{i=1}^N \operatorname{sign}(b_i, f) \int_N \omega = \sum_{i=1}^N \operatorname{sign}(b_i, f)$.

Corollary 1. If M is compact and oriented and N is connected and oriented then the sum $\sum_{b \in f^{-1}(a)} \operatorname{sign}(b, f)$ is the same for any regular value a of f.

If $f^{-1}(a) = \emptyset$ then a is a regular value with deg(f, a) = 0. So, Corollary 1 implies

Corollary 2. If M is compact and oriented and N is connected and oriented and $\deg(f) \neq 0$ then f(M) = N. In particular, $\deg(f) \neq 0$ is possible only if N is compact.