LECTURE 8

Abstract. Lie derivative and Cartan's formula.

Let X be a vector field on a manifold M, and $\omega \in \Omega^{k}(M)$. Take $a \in M ; U \ni a$ be a neighbourhood of a, and let $\Phi_{X}: U \times[-\varepsilon, \varepsilon] \rightarrow M$ be a local phase flow of the field $X: \Phi_{X}(b, t) \stackrel{\text { def }}{=} \gamma(t)$ where γ is the phase curve of the field X with $\gamma(0)=b$. For a fixed t the map $\left.\Phi_{t}^{X} \stackrel{\text { def }}{=} \Phi_{X}\right|_{U \times\{t\}}: U \rightarrow M$ is smooth, so one can consider the k-form $\omega_{t} \stackrel{\text { def }}{=}\left(\Phi_{t}^{X}\right)^{*} \omega$. The k-form $\left.\mathcal{L}_{X} \omega \stackrel{\text { def }}{=} \frac{d \omega_{t}}{d t}\right|_{t=0}$ is called the Lie derivative of the form ω with respect to the field X. For $k=0$ then the operator $\mathcal{L}_{X}: \Omega^{0}(M)=C^{\infty}(M) \rightarrow C^{\infty}(M)$ is the action of the vector field X on smooth functions defined earlier.

Denote by $\iota_{X} \omega$ the ($k-1$)-form defined at a point $a \in M$ by the formula $\left(\iota_{X} \omega\right)(a)\left(v_{1}, \ldots, v_{k-1}\right)=\omega(a)\left(X(a), v_{1}, \ldots, v_{k-1}\right)$ for all $v_{1}, \ldots, v_{k-1} \in T_{a} M$. If $k=0$ then take $\iota_{X} \omega=0$ by definition.

A linear operator A on the super-commutative algebra $\Omega(M)$ of all differential forms (with the wedge product as multiplication) is called a derivation if $A\left(\omega_{1} \wedge \omega_{2}\right)=\left(A \omega_{1}\right) \wedge \omega_{2}+\omega_{1} \wedge\left(A \omega_{2}\right)$ for all $\omega_{1}, \omega_{2} \in \Omega(M)$; the operator is called a super-derivation if $A\left(\omega_{1} \wedge \omega_{2}\right)=\left(A \omega_{1}\right) \wedge \omega_{2}+(-1)^{k} \omega_{1} \wedge\left(A \omega_{2}\right)$ for $\omega_{1} \in \Omega^{k}(M)$ and any ω_{2}.

Theorem 1. (1) The operator \mathcal{L}_{X} is a derivation, the operators ι_{X} and d are super-derivations.
(2) $\iota_{X} \iota_{Y}=-\iota_{Y} \iota_{X}$ for any vector fields X and Y.
(3) $\mathcal{L}_{X} d=d \mathcal{L}_{X}$ for any vector field X.
(4) $\mathcal{L}_{X} \mathcal{L}_{Y}=\mathcal{L}_{Y} \mathcal{L}_{X}+\mathcal{L}_{[X, Y]}$ for all X and Y.
(5) (Cartan's formula) $\mathcal{L}_{X}=\iota_{X} d+d \iota_{X}$ for any X.
(6) $\iota_{X} \mathcal{L}_{Y}=\mathcal{L}_{Y} \iota_{X}+\iota_{[X, Y]}$ for all X and Y.

Proof. 1. By naturality of the wedge product $\left(\Phi_{t}^{X}\right)^{*}\left(\omega_{1} \wedge \omega_{2}\right)=\left(\left(\Phi_{t}^{X}\right)^{*} \omega_{1}\right) \wedge\left(\left(\Phi_{t}^{X}\right)^{*} \omega_{2}\right)$, which implies that \mathcal{L}_{X} is a derivation. ι_{X} is obviously a super-derivation, and the fact that d is a super-derivation was proved earlier.

2 follows from the fact that $\omega(a)$ is a skew-symmetric k-linear form on $T_{a} M$.
3. By naturality of the exterior derivative one has $d\left(\Phi_{t}^{X}\right)^{*} \omega=\left(\Phi_{t}^{X}\right)^{*} d \omega$, hence $\mathcal{L}_{X} d \omega=d \mathcal{L}_{X} \omega$.
4. By Statement 3 the commutator $\left[\mathcal{L}_{X}, \mathcal{L}_{Y}\right] \stackrel{\text { def }}{=} \mathcal{L}_{X} \mathcal{L}_{Y}-\mathcal{L}_{Y} \mathcal{L}_{X}$ commutes with d and maps $\Omega^{k}(M)$ to $\Omega^{k}(M)$ (preserves the degree of a form). By Statement 1 the \mathcal{L}_{X} and \mathcal{L}_{Y} are derivations, and therefore $\left[\mathcal{L}_{X}, \mathcal{L}_{Y}\right]$ is a derivation too. Locally any form ω is a sum of expressions like $f \wedge d x_{1} \wedge \cdots \wedge d x_{k}$ where f, x_{1}, \ldots, x_{k} are functions (0-forms), so it will suffice to prove the equality $\left[\mathcal{L}_{X}, \mathcal{L}_{Y}\right]=\mathcal{L}_{[X, Y]}$ on functions. This was done earlier.
5. Denote the right-hand side of the equality by $\left\{\iota_{X}, d\right\}$ and call it a super-commutator. The operator $\left\{\iota_{X}, d\right\}$ preserves the degree of a form and commutes with $d: d\left\{\iota_{X}, d\right\}=d \iota_{X} d=\left\{\iota_{X}, d\right\} d$ because $d^{2}=0$. Once ι_{X} and d are proved to be super-derivations, $\left\{\iota_{X}, d\right\}$ is a derivation (the proof of this is an easy exercise similar to the statement that the commutator of two derivations is a derivation). Therefore, similar to Statement 4, it suffices to prove the Cartan's formula for 0 -forms, that is, functions. Since the equality deals with the forms and vector fields locally (to compute all operators at a point $a \in M$ it is enough to know the fields and the forms in any neighbourhood of a), one can suppose without loss of generality that M is an open subset of \mathbb{R}^{n}. Then $\omega=f(x)$, the vector field $X=\sum_{i=1}^{n} A_{i}(x) \frac{\partial}{\partial x_{i}}$, so that $\iota_{X} f=0 \Longrightarrow d \iota_{X} f=0$ and $\iota_{X} d f=\sum_{i=1}^{n} A_{i}(x) \frac{\partial f}{\partial x_{i}}=\mathcal{L}_{X} f$.
6. One has $\left\{\left[\iota_{X}, \mathcal{L}_{Y}\right], d\right\}=d \iota_{X} \mathcal{L}_{Y}-d \mathcal{L}_{Y} \iota_{X}+\iota_{X} \mathcal{L}_{Y} d-\mathcal{L}_{Y} \iota_{X} d=d \iota_{X} \mathcal{L}_{Y}-\mathcal{L}_{Y} d \iota_{X}+\iota_{X} d \mathcal{L}_{Y}-\mathcal{L}_{Y} \iota_{X} d$ (by Statement 3) $=\left[\left\{\iota_{X}, d\right\}, \mathcal{L}_{Y}\right]=\left[\mathcal{L}_{X}, \mathcal{L}_{Y}\right]$ (by Statement 5) $=\mathcal{L}_{[X, Y]}$ (by Statement 4) $=\left\{\iota_{[X, Y]}, d\right\}$ (by Statement 5). The operator ι_{X} is a super-derivation, \mathcal{L}_{Y}, a derivation, so $\left[\iota_{X}, \mathcal{L}_{Y}\right]$ is a super-derivation. Thus it suffices to check the equality in question on 0 -forms (functions) where it looks as $0=0$.

