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LECTURE 8

Abstract. Lie derivative and Cartan's formula.

Let X be a vector �eld on a manifold M , and ! ∈ 
k(M). Take a ∈ M ; U 3 a be a neighbourhood of a, and
let �X : U × [−"; "] → M be a local phase 
ow of the �eld X: �X(b; t) def= 
(t) where 
 is the phase curve of the
�eld X with 
(0) = b. For a �xed t the map �Xt

def= �X |U×{t} : U →M is smooth, so one can consider the k-form
!t def= (�Xt )∗!. The k-form LX! def= d!t

dt
∣∣
t=0 is called the Lie derivative of the form ! with respect to the �eld X.

For k = 0 then the operator LX : 
0(M) = C∞(M) → C∞(M) is the action of the vector �eld X on smooth
functions de�ned earlier.

Denote by �X! the (k−1)-form de�ned at a point a ∈M by the formula (�X!)(a)(v1; : : : ; vk−1) = !(a)(X(a); v1; : : : ; vk−1)
for all v1; : : : ; vk−1 ∈ TaM . If k = 0 then take �X! = 0 by de�nition.

A linear operator A on the super-commutative algebra 
(M) of all di�erential forms (with the wedge product
as multiplication) is called a derivation if A(!1∧!2) = (A!1)∧!2 +!1∧ (A!2) for all !1; !2 ∈ 
(M); the operator
is called a super-derivation if A(!1 ∧ !2) = (A!1) ∧ !2 + (−1)k!1 ∧ (A!2) for !1 ∈ 
k(M) and any !2.
Theorem 1. (1) The operator LX is a derivation, the operators �X and d are super-derivations.

(2) �X�Y = −�Y �X for any vector �elds X and Y .
(3) LXd = dLX for any vector �eld X.
(4) LXLY = LY LX + L[X;Y ] for all X and Y .
(5) (Cartan's formula) LX = �Xd+ d�X for any X.
(6) �XLY = LY �X + �[X;Y ] for all X and Y .

Proof. 1. By naturality of the wedge product (�Xt )∗(!1 ∧ !2) = ((�Xt )∗!1) ∧ ((�Xt )∗!2), which implies that LX is
a derivation. �X is obviously a super-derivation, and the fact that d is a super-derivation was proved earlier.

2 follows from the fact that !(a) is a skew-symmetric k-linear form on TaM .
3. By naturality of the exterior derivative one has d(�Xt )∗! = (�Xt )∗d!, hence LXd! = dLX!.
4. By Statement 3 the commutator [LX ;LY ] def= LXLY − LY LX commutes with d and maps 
k(M) to 
k(M)

(preserves the degree of a form). By Statement 1 the LX and LY are derivations, and therefore [LX ;LY ] is a
derivation too. Locally any form ! is a sum of expressions like f ∧ dx1 ∧ · · · ∧ dxk where f; x1; : : : ; xk are functions
(0-forms), so it will su�ce to prove the equality [LX ;LY ] = L[X;Y ] on functions. This was done earlier.

5. Denote the right-hand side of the equality by {�X ; d} and call it a super-commutator. The operator {�X ; d}
preserves the degree of a form and commutes with d: d{�X ; d} = d�Xd = {�X ; d}d because d2 = 0. Once �X and
d are proved to be super-derivations, {�X ; d} is a derivation (the proof of this is an easy exercise similar to the
statement that the commutator of two derivations is a derivation). Therefore, similar to Statement 4, it su�ces
to prove the Cartan's formula for 0-forms, that is, functions. Since the equality deals with the forms and vector
�elds locally (to compute all operators at a point a ∈ M it is enough to know the �elds and the forms in any
neighbourhood of a), one can suppose without loss of generality that M is an open subset of Rn. Then ! = f(x),
the vector �eld X = ∑n

i=1Ai(x) @
@xi , so that �Xf = 0 =⇒ d�Xf = 0 and �Xdf = ∑n

i=1Ai(x) @f@xi = LXf .
6. One has {[�X ;LY ]; d} = d�XLY − dLY �X + �XLY d − LY �Xd = d�XLY − LY d�X + �XdLY − LY �Xd (by

Statement 3) = [{�X ; d};LY ] = [LX ;LY ] (by Statement 5) = L[X;Y ] (by Statement 4) = {�[X;Y ]; d} (by Statement
5). The operator �X is a super-derivation, LY , a derivation, so [�X ;LY ] is a super-derivation. Thus it su�ces to
check the equality in question on 0-forms (functions) where it looks as 0 = 0. ¤

1


