LECTURE 7

Abstract. Integration of differential forms. Stokes' theorem.

1. Integration of forms. For a differential form ω its support $\operatorname{supp} \omega$ is defined as the closure of the set $\{a \in$ $M \mid \omega(a) \neq 0\} \subset M$. From now on let M be an oriented n-dimensional manifold and ω, a n-form (the same $n!$) with compact support on it.

Let first $M=U \subset \mathbb{R}^{n}$ be an open subset. Then the form ω looks as $\omega(x)=f(x) d x_{1} \wedge \cdots \wedge d x_{n}$ where $\operatorname{supp} f \subset U$ is compact. The integral $\int_{U} \omega$ is defined as the Riemann integral $\int_{U} f(x) d x_{1} \ldots d x_{n}$ (f is smooth, hence continuous, and therefore Riemann integrable).

Lemma 1. Let $U_{1}, U_{2} \subset \mathbb{R}^{n}$ be open subsets, and $h: U_{1} \rightarrow U_{2}$ be a diffeomorphism such that det $h^{\prime}(x)>0$ for any $x \in U_{1}$. Let $\operatorname{supp} \omega \subset U_{2}$ be compact. Then $\int_{U_{2}} \omega=\int_{U_{1}} h^{*} \omega$.

Proof. Let $h(x)=\left(h_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, h_{n}\left(x_{1}, \ldots, x_{n}\right)\right)$; then

$$
\begin{aligned}
h^{*} \omega(x) & =f(h(x)) d h^{*} x_{1} \wedge \cdots \wedge d h^{*} x_{n}=f(h(x)) d h_{1}(x) \wedge \cdots \wedge d h_{n}(x) \\
& =\sum_{i_{1}, \ldots, i_{n}=1}^{n} f(h(x)) \frac{\partial h_{1}}{\partial x_{i_{1}}} \cdots \frac{\partial h_{n}}{\partial x_{i_{n}}} d x_{i_{1}} \wedge \cdots \wedge d x_{i_{n}}=\sum_{\sigma \in S_{n}}(-1)^{\text {parity of } \sigma} \frac{\partial h_{1}}{\partial x_{i_{1}}} \cdots \frac{\partial h_{n}}{\partial x_{i_{n}}} d x_{1} \wedge \cdots \wedge d x_{n} \\
& =\operatorname{det} h^{\prime}(x) f(h(x)) d x_{1} \wedge \cdots \wedge d x_{n} .
\end{aligned}
$$

Now the lemma follows from the change of variables formula for the n-dimensional integral (the absolute value sign in this formula is unnecessary here because $\left.\operatorname{det} h^{\prime}(x)>0\right)$.

Let now M be any manifold with an oriented atlas $\left\{\left(U_{\alpha} . V_{\alpha}, x_{\alpha}\right)\right\}$, and let $\left\{\varrho_{\alpha}\right\}$ be a partition of unity subordinate to $\left\{U_{\alpha}\right\}$.
Definition 1. $\int_{M} \omega=\sum_{\alpha} \int_{V_{\alpha}}\left(x_{\alpha}^{-1}\right)^{*}\left(\varrho_{\alpha} \omega\right)$.
Proposition 1. Definition 1 is sound: if $\left\{\left(\tilde{U}_{\alpha} \cdot \tilde{V}_{\alpha}, \tilde{x}_{\alpha}\right)\right\}$ is another atlas on M with the same orientation, and $\tilde{\varrho}_{\alpha}$ is a partition of unity subordinate to $\left\{\tilde{U}_{\alpha}\right\}$ then $\int_{M} \omega$ defined by means of this partition is equal to that of Definition 1.

Proof. Let $a \in U_{\alpha} \cap \tilde{U}_{\beta}, V_{\alpha \beta}=x_{\alpha}\left(U_{\alpha} \cap \tilde{U}_{\beta}\right) \subset V_{\alpha}, V_{\beta \alpha}=\tilde{x}_{\beta}\left(U_{\alpha} \cap \tilde{U}_{\beta}\right) \subset \tilde{V}_{\beta}$. The transition map $\varphi_{\beta \alpha}=x_{\alpha} \tilde{x}_{\beta}^{-1}:$ $V_{\beta \alpha} \rightarrow V_{\alpha \beta}$ is a diffeomorphism; once the two atlases have the same orientation, $\operatorname{det} \varphi_{\beta \alpha}^{\prime}(u)>0$ for any u.

Now one has

$$
\begin{aligned}
\sum_{\alpha} & \int_{V_{\alpha}}\left(x_{\alpha}^{-1}\right)^{*}\left(\varrho_{\alpha} \omega\right)=\sum_{\alpha, \beta} \int_{V_{\alpha}}\left(x_{\alpha}^{-1}\right)^{*}\left(\varrho_{\alpha} \tilde{\varrho}_{\beta} \omega\right) & & \text { because } \sum_{\beta} \tilde{\varrho}_{\beta} \equiv 1 \\
& =\sum_{\alpha, \beta} \int_{V_{\alpha \beta}}\left(x_{\alpha}^{-1}\right)^{*}\left(\tilde{\varrho}_{\beta} \varrho_{\alpha} \omega\right) & & \text { because supp } \varrho_{\alpha} \cap \operatorname{supp} \tilde{\varrho}_{\beta} \subset U_{\alpha} \cap \tilde{U}_{\beta} \\
& =\sum_{\alpha, \beta} \int_{V_{\beta \alpha}} \varphi_{\beta \alpha}^{*}\left(x_{\alpha}^{-1}\right)^{*}\left(\tilde{\varrho}_{\beta} \varrho_{\alpha} \omega\right) & & \text { by Lemma } 1 \\
& =\sum_{\alpha, \beta} \int_{V_{\beta \alpha}} \varrho_{\alpha}\left(\tilde{x}_{\beta}^{-1}\right)^{*}\left(\tilde{\varrho}_{\beta} \omega\right)=\sum_{\beta} \int_{V_{\beta}}\left(\tilde{x}_{\beta}^{-1}\right)^{*}\left(\tilde{\varrho}_{\beta} \omega\right) & & \text { because } \sum_{\alpha} \varrho_{\alpha} \equiv 1 .
\end{aligned}
$$

Example 1. Let $S^{1} \subset \mathbb{R}^{2}$ be a unit circle centered at the origin. The tangent space $T_{a} S^{1}$ is naturally identified with the line $\left\{v \in \mathbb{R}^{2} \mid(a, v)=0\right\}$ where (\cdot, \cdot) is the standard scalar product. Let $\nu_{a}: T_{a} S^{1} \rightarrow \mathbb{R}$ be a linear functional such that for any $v \in T_{a} S^{1}$ one has $\nu_{a}(v)=|v|$ if v is directed counterclockwise from the vector a, and $\nu_{a}(v)=-|v|$ if v is directed clockwise. Thus $a \mapsto \nu_{a}$ is a differential 1-form on S^{1}.

Consider at S^{1} an atlas $\left\{\left(U_{1},(-\pi, \pi), \varphi\right),\left(U_{2},(-\pi, \pi), \tilde{\varphi}\right)\right\}$ described at Example 5 of Lecture 6: $U_{1}=S^{1} \backslash\{a\}$, $U_{2}=S^{1} \backslash\{b\}$ where $a, b \in S^{1}$ are two opposite points, φ and $\tilde{\varphi}$ are polar angles measured counterclockwise with $\varphi(b)=0$ and $\tilde{\varphi}(a)=0$, respectively. The transition maps are $\psi(u)=u-\pi$ in the lower arc $a b$ and $\psi(u)=u+\pi$ in the upper arc. The 1 -form described above is $d \varphi=d \tilde{\varphi}$.

Let $\varrho_{1}, \varrho_{2}=1-\varrho_{1}$ be a partition of unity subordinate to $\left\{U_{1}, U_{2}\right\}$. Thus, supp $\varrho_{1} \subset U_{1}$, so $\varrho_{1}(x)=0 \Longrightarrow \varrho_{2}(x)=$ 1 in a neighbourhood of a, and vice versa in a neighbourhood of b. Hence $\varphi^{*}\left(\varrho_{1} d \varphi\right)=f(t) d x$ where $f:(-\pi, \pi)$ is a smooth function such that $f(t) \equiv 1$ in a neighbourhood of $t=0$ and $f(t) \equiv 0$ in neighbourhoods of $t= \pm \pi$. From the formulas for the transition maps it follows then that $\tilde{\varphi}^{*}\left(\left(1-\varrho_{1}\right) d \tilde{\varphi}\right)=g(t) d t$ where $g(t)=1-f(t+\pi)$
for $t \in(-\pi, 0)$ and $g(t)=1-f(t-\pi)$ for $t \in(0, \pi)$ (in particular, $g(t) \equiv 1$ in a neighbourhood of $t=0$). Thus, $\int_{S^{1}} \nu=\int_{-\pi}^{\pi}(f(t)+g(t)) d t=2 \pi$.
2. Manifolds with boundary and Stokes' theorem. An atlas with boundary in the set M is the set of triples $\left\{\left(U_{\alpha} . V_{\alpha}, x_{\alpha}\right)\right\}$ having all the properties of an atlas on a manifold, with one exception: for some systems of coordinates $V_{\alpha} \subset \mathbb{R}^{n}$ is an open set (like for a manifold; these are called internal systems), while for other systems of coordinates $V_{\alpha}=\tilde{V}_{\alpha} \cap \mathbb{R}_{-}^{n}$ where $\tilde{V}_{\alpha} \subset \mathbb{R}^{n}$ is an open subset and $\mathbb{R}_{-}^{n} \stackrel{\text { def }}{=}\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{1} \leq 0\right\}$; these are called boundary systems. Transition maps $\varphi_{\alpha \beta}$ now are either smooth maps defined in open subsets $V_{\alpha \beta} \subset \mathbb{R}^{n}$ or restrictions of smooth maps defined in open subsets $\tilde{V}_{\alpha \beta} \subset \mathbb{R}^{n}$ to the intersections $V_{\alpha \beta}=\tilde{V}_{\alpha \beta} \cap \mathbb{R}_{-}^{n}$.

Definition. A point $a \in M$ is called a point of the boundary if $a \in U_{\alpha}$ for some boundary system of coordinates $\left(U_{\alpha}, V_{\alpha}, x_{\alpha}\right)$ and $x_{\alpha}(a) \in \mathbb{R}_{0}^{n} \stackrel{\text { def }}{=}\left\{\left(0, x_{2}, \ldots, x_{n}\right) \mid x_{2}, \ldots, x_{n} \in \mathbb{R}\right\}$. The boundary (the set of all points of the boundary) is denoted ∂M.

Lemma 2. If $a \in \partial M$ and $a \in U_{\alpha}$ for some system of coordinates $\left(U_{\alpha}, V_{\alpha}, x_{\alpha}\right)$ then this system of coordinates is boundary and $x_{\alpha}(a) \in \mathbb{R}_{0}^{n}$.

Proof. Suppose $x_{\alpha}(a)$ is an internal point of V_{α} (that is, $\left(U_{\alpha}, V_{\alpha}, x_{\alpha}\right)$ is an internal system of coordinates, or it is a boundary system of coordinates but $\left.x_{\alpha}(a) \notin \mathbb{R}_{0}^{n}\right)$. Since $a \in \partial M$, there exists a boundary system of coordinates $\left(U_{\beta}, V_{\beta}, x_{\beta}\right)$ such that $a \in U_{\beta}$ and $x_{\beta}(a) \in \mathbb{R}_{0}^{n}$. The transition map $\varphi_{\beta \alpha}: V_{\beta \alpha} \rightarrow V_{\alpha \beta}$ is a restriction of a diffeomorphism $\varphi_{\beta \alpha}: \tilde{V}_{\beta \alpha} \rightarrow W \subset \mathbb{R}^{n}$ defined in an open subset $\tilde{V}_{\beta \alpha} \subset \mathbb{R}^{n}$ to the intersection $V_{\beta \alpha}=$ $\tilde{V}_{\beta \alpha} \cap \mathbb{R}_{-}^{n}$. By assumption we have $\psi_{\beta \alpha}\left(x_{\beta}(a)\right)=x_{\alpha}(a) \notin \mathbb{R}_{0}^{n}$; hence there exists $\varepsilon>0$ such that the ball $B_{\varepsilon}\left(x_{\alpha}(a)\right)=\left\{y| | y-x_{\alpha}(a) \mid<\varepsilon\right\}$ is a subset of $V_{\alpha \beta}$. The map $\psi_{\beta \alpha}$ is continuous, so there exists a $\delta>0$ such that $\psi_{\beta \alpha}\left(B_{\delta}\left(x_{\beta}(a)\right)\right) \subset B_{\varepsilon}\left(x_{\alpha}(a)\right) \subset V_{\alpha \beta}$. Thus $\psi_{\alpha \beta}\left(V_{\alpha \beta}\right) \supset B_{\delta}\left(x_{\beta}(a)\right)$. Since $x_{\beta}(a) \in \mathbb{R}_{0}^{n}$, the intersection $B_{\delta}\left(x_{\beta}(a)\right) \cap \mathbb{R}_{+}^{n} \neq \varnothing$, so $\psi_{\alpha \beta}\left(V_{\alpha \beta}\right) \cap \mathbb{R}_{+}^{n} \neq \varnothing$ contrary to $\psi_{\alpha \beta}\left(V_{\alpha \beta}\right)=V_{\beta \alpha} \subset \mathbb{R}_{-}^{n}$.

Denote by $p: \mathbb{R}_{0}^{n} \rightarrow \mathbb{R}^{n-1}$ the natural identification (deletion of the leading zero). Let ($U_{\alpha}, V_{\alpha}, x_{\alpha}$) be a boundary coordinate system on M. Take $\tilde{U}_{\alpha} \stackrel{\text { def }}{=} U_{\alpha} \cap \partial M, \tilde{V}_{\alpha} \stackrel{\text { def }}{=} p\left(V_{\alpha} \cap \mathbb{R}_{0}^{n}\right) \subset \mathbb{R}^{n-1}$ and $\left.\tilde{x}_{\alpha} \stackrel{\text { def }}{=} p \circ x_{\alpha}\right|_{\partial M}$.
Theorem 1. $\left\{\left(\tilde{U}_{\alpha}, \tilde{V}_{\alpha}, \tilde{x}_{\alpha}\right)\right\}$ is an $(n-1)$-dimensional atlas for ∂M. If $\left\{\left(U_{\alpha}, V_{\alpha}, x_{\alpha}\right)\right\}$ is oriented then this atlas is oriented, too.
Proof. Proof of the properties of an atlas for $\left\{\left(\tilde{U}_{\alpha}, \tilde{V}_{\alpha}, \tilde{x}_{\alpha}\right)\right\}$ is a routine check. The only statement worth proving is orientability.

Let $\psi_{\alpha \beta}: V_{\alpha \beta} \rightarrow V_{\beta \alpha}$ be a transition map between two boundary coordinate systems on M; explicitly $\psi_{\alpha \beta}\left(u_{1}, \ldots, u_{n}\right) \stackrel{\text { def }}{=}\left(f_{1}\left(u_{1}, \ldots, u_{n}\right), \ldots, f_{n}\left(u_{1}, \ldots, u_{n}\right)\right)$. Here $u_{1} \leq 0, f_{1}\left(u_{1}, \ldots, u_{n}\right) \leq 0$, and by Lemma 2 $f_{1}\left(0, u_{2}, \ldots, u_{n}\right) \equiv 0$. Hence $\left.\psi_{\alpha \beta}^{\prime}\left(0, u_{2}, \ldots, u_{n}\right)=\left(\begin{array}{ccc}\frac{\partial f_{1}}{\partial u_{1}}\left(0, u_{2}, \ldots, u_{n}\right) & 0 & \ldots\end{array}\right) 0 \begin{array}{cc}\frac{\partial f_{2}}{\partial u_{1}}\left(0, u_{2}, \ldots, u_{n}\right) & \\ \vdots & \tilde{\psi}_{\alpha \beta}^{\prime}\left(u_{2}, \ldots, u_{n}\right) \\ \frac{\partial f_{n}}{\partial u_{1}}\left(0, u_{2}, \ldots, u_{n}\right) & \end{array}\right)$ where $\tilde{\psi}_{\alpha \beta}$ is the transition map for the atlas on ∂M. So $\operatorname{det} \psi_{\alpha \beta}^{\prime}\left(0, u_{2}, \ldots, u_{n}\right)=\frac{\partial f_{1}}{\partial u_{1}}\left(0, u_{2}, \ldots, u_{n}\right) \operatorname{det} \tilde{\psi}_{\alpha \beta}^{\prime}\left(u_{2}, \ldots, u_{n}\right)>0$. Since $f_{1}\left(u_{1}, \ldots, u_{n}\right) \leq 0$ for all $u_{1} \leq 0$, one has $\frac{\partial f_{1}}{\partial u_{1}}\left(0, u_{2}, \ldots, u_{n}\right)>0$, and therefore $\operatorname{det} \tilde{\psi}_{\alpha \beta}^{\prime}\left(u_{2}, \ldots, u_{n}\right)>0$.
Theorem 2 (Stokes). Let M be an oriented manifold with boundary, and $\iota: \partial M \rightarrow M$ is the tautological embedding $(\iota(a)=a$ for any $a \in \partial M \subset M)$. Let ω be a $(n-1)$-form with compact support on M. Then $\int_{M} d \omega=\int_{\partial M} \iota^{*} \omega$.
Proof. Let first $M=\mathbb{R}_{-}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{1} \leq 0\right\}$, so $\partial M=\mathbb{R}^{n-1}$. Then $\omega=f_{1}(x) d x_{2} \wedge \cdots \wedge d x_{n}+$ $f_{2}(x) d x_{1} \wedge d x_{3} \wedge \cdots \wedge d x_{n}+\cdots+f_{n}(x) d x_{1} \wedge \cdots \wedge d x_{n-1}, \iota^{*} \omega=f_{1}\left(0, x_{2},, \ldots, x_{n}\right) d x_{2} \wedge \cdots \wedge d x_{n}$ and $d \omega=$ $\left(\frac{\partial f_{1}}{\partial x_{1}}(x)-\frac{\partial f_{2}}{\partial x_{2}}(x)+\cdots+(-1)^{n-1} \frac{\partial f_{n}}{\partial x_{n}}(x)\right) d x_{1} \wedge \cdots \wedge d x_{n}$.

Without loss of generality $\operatorname{supp} \omega \subset[-1,0]^{n}$. Then for $i=2, \ldots, n$ one has $\int_{\mathbb{R}_{-}^{n}} \frac{\partial f_{i}}{\partial x_{i}} d x_{1} \wedge \cdots \wedge d x_{n}=$ $\int_{[-1,0]^{n-1}}\left(\int_{-1}^{0} \frac{\partial f_{i}}{\partial x_{i}} d x_{i}\right) d x_{1} \ldots \widehat{d x_{i}} \ldots d x_{n}=\int_{[-1,0]^{n-1}}\left(f_{i}\left(x_{1}, \ldots, 0, \ldots, x_{n}\right)-f_{i}\left(x_{1}, \ldots,-1, \ldots, x_{n}\right) d x_{1} \ldots \widehat{d x_{i}} \ldots d x_{n}=\right.$ 0 , and for $i=1$ one has in a similar manner $\int_{\mathbb{R}_{-}^{n}} \frac{\partial f_{1}}{\partial x_{1}} d x_{2} \wedge \cdots \wedge d x_{n}=\int_{[-1,0]^{n-1}}\left(f_{1}\left(0, x_{2}, \ldots, x_{n}\right)-f_{n}\left(-1, x_{2}, \ldots, x_{n}\right)\right) d x_{2} \ldots d x_{n}=$ $\int_{\mathbb{R}^{n-1}} f_{n}\left(0, x_{2}, \ldots, x_{n}\right) d x_{2} \ldots d x_{n}=\int_{\partial \mathbb{R}_{-}^{n}} \iota^{*} \omega$.

For an arbitrary M let $\left\{\left(U_{\alpha}, V_{\alpha}, x_{\alpha}\right)\right\}$ be an oriented locally finite atlas, and $\left\{\varrho_{\alpha}\right\}$ be a partition of unity subordinate to $\left\{\left(U_{\alpha}\right\}\right.$. The support $\operatorname{supp} \omega$ is compact, so it intersects only a finite number of charts: $\operatorname{supp} \omega \subset$ $U_{1} \cup \cdots \cup U_{N}$ and $\operatorname{supp} \omega \cap U_{\alpha}=\varnothing$ for $\alpha \neq 1, \ldots, N$. Then $\omega=\sum_{i=1}^{N} \varrho_{i} \omega$. By linearity it suffices to prove the theorem for every form $\omega_{i} \stackrel{\text { def }}{=} \varrho_{i} \omega, i=1, \ldots, N$.

Now $\int_{M} d \omega_{i}=\int_{V_{i}}\left(x_{i}^{-1}\right)^{*} d \omega_{i}=\int_{V_{i}} d\left(x_{i}^{-1}\right)^{*} \omega_{i}$ (due to naturality of d) $=\int_{V_{i} \cap \mathbb{R}^{n-1}}\left(x_{i}^{-1}\right)^{*} \omega_{i}$ (proved above) $=\int_{\partial M} \omega_{i}$.

Example 2. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a holomorphic function, and $\nu \stackrel{\text { def }}{=} f(z) d z \stackrel{\text { def }}{=} f(z)(d x+i d y)$ be a 1-form with complex values $\left(z=x+i y\right.$ where $x, y \in \mathbb{R}$ are coordinates on $\mathbb{C}=\mathbb{R}^{2}$ viewed as a (real) 2-manifold). If $f(x+i y) \stackrel{\text { def }}{=} g(x, y)+i h(x, y)$ where $g, h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are smooth functions then $\nu=(g d x-h d y)+i(g d y+h d x)$ and $d \nu=\left(\left(-\frac{\partial g}{\partial y}-\frac{\partial h}{\partial x}\right)+i\left(\frac{\partial g}{\partial x}-\frac{\partial h}{\partial y}\right)\right) d x \wedge d y=0$ by the Cauchy-Riemann theorem. Let $M \subset \mathbb{C}$ be diffeomorphic to a disc, with its boundary $\partial M=\gamma([0,1])$ where $\gamma:[0,1] \rightarrow \mathbb{C}$ is a smooth curve. Then $\int_{\partial M} f(z) d z=\int_{0}^{1} \gamma^{*}(f(z) d z)=$ $\int_{0}^{1} f(\gamma(t)) \gamma^{\prime}(t) d t=\int_{M} d \nu=0-$ one of the principal theorems of elementary complex analysis.

If $f: \mathbb{C} \rightarrow \mathbb{C}$ is holomorphic in $\mathbb{C} \backslash\{0\}$, and $M \subset \mathbb{C} \backslash\{0\}$ is diffeomorphic to an annulus, with its boundary $\partial M=\gamma_{1}([0,1]) \cup \gamma_{2}([0,1])$ where $\gamma_{1}, \gamma_{2}:[0,1] \rightarrow \mathbb{C}$ are smooth curves. Like in the previous case one obtains $0=\int_{\partial M} f(z) d z=\int_{0}^{1} \gamma_{1}^{*}(f(z) d z)-\int_{0}^{1} \gamma_{2}^{*}(f(z) d z)$ (the minus sign is due to orienation). So, $\int_{0}^{1} \gamma^{*}(f(z) d z)$ is the same for all curves γ encircling the origin in the counterclockwise direction. This number (not necessarily zero!) divided by $2 \pi i$ is called the residue of the 1-form $f(z) d z$ at the origin.

