HSE, FALL 2016 FOUNDATIONS OF DIFFERENTIAL GEOMETRY

LECTURE 7

ABSTRACT. Integration of differential forms. Stokes’ theorem.

1. Integration of forms. For a differential form w its support suppw is defined as the closure of the set {a €
M | w(a) # 0} C M. From now on let M be an oriented n-dimensional manifold and w, a n-form (the same n!)
with compact support on it.

Let first M = U C R"™ be an open subset. Then the form w looks as w(z) = ( )d:z:l A -+ A dzx, where
supp f C U is compact. The integral [, w is defined as the Riemann integral [, f(x)dz: d:z:n (f is smooth,
hence continuous, and therefore Riemann integrable).

Lemma 1. Let Uy, Us C R” be open subsets, and h : Uy — Us be a diffeomorphism such that det h'(z) > 0 for any
x € Uy. Let suppw C Us be compact. Then fU2 w= fUl h*w.

Proof. Let h(z) = (hi(z1,...,2Zn), .., An(z1,...,2y,)); then
hWw(z) = f(h(z))dh*zy A+ ANdhz, = f(h(x))dhy(z) A+ Adhy(z)
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=deth'(z)f(h(z))dzy A Ndxy,.

Now the lemma follows from the change of variables formula for the n-dimensional integral (the absolute value sign
in this formula is unnecessary here because det h’(x) > 0). O

Let now M be any manifold with an oriented atlas {(U,.Va, 4)}, and let {0, } be a partition of unity subordinate
to {Ua}.

Definition 1. [, w =3 [, (z;")"(0aw)-
Proposition 1. Definition 1 is sound: if {(ﬁa.va,i'a)} is another atlas on M with the same orientation, and 9,

is a partition of unity subordinate to {f]a} then fM w defined by means of this partition is equal to that of Definition
1.

Proof. Let a € Uy, N 0/3’ Vag = 2o(Ua N [75) C Vo, Vo = 23U N [7,3) - ‘7,3. The transition map g, = xa@;l
Vsa — Vap is a diffeomorphism; once the two atlases have the same orientation, det ¢}, (u) > 0 for any u.
Now one has

Ya fv *(0aw) Z fv “(9a0pwW) because ;05 =1
= Z jv . (z")* (05 gaw) because supp ¢, Nsupp gg C Uy N Ug
Z fvﬂ S%a o) (830aw) by Lemma 1
— Z fvﬁ Oa xﬁ *(0pw) = 34 fvﬁ )*(0pw) because Y 0o = 1.

O

Ezample 1. Let S' C R? be a unit circle centered at the origin. The tangent space T,S! is naturally identified
with the line {v € R? | (a,v) = 0} where (-,-) is the standard scalar product. Let v, : T,S' — R be a linear
functional such that for any v € T, S* one has v,(v) = |v| if v is directed counterclockwise from the vector a, and
vo(v) = — || if v is directed clockwise. Thus a — v, is a differential 1-form on S*.

Consider at S! an atlas {(Uy, (—m,7),¢), (U, (—m,7),$)} described at Example 5 of Lecture 6: U; = S\ {a},
U, = St \ {b} where a,b € S are two opposite points, ¢ and @ are polar angles measured counterclockwise with
p(b) = 0 and @(a) = 0, respectively. The transition maps are 1(u) = u — 7 in the lower arc ab and ¥(u) = u + 7
in the upper arc. The 1-form described above is dy = dg.

Let 01, 02 = 1— 01 be a partition of unity subordinate to {Uy,Us}. Thus, supp 01 C Uy, 80 g1(x) =0 = g2(x) =
1 in a neighbourhood of a, and vice versa in a neighbourhood of b. Hence ¢*(g1dy) = f(t) dx where f : (—m,7)
is a smooth function such that f(¢) = 1 in a neighbourhood of ¢ = 0 and f(¢) = 0 in neighbourhoods of ¢ = +.
From the formulas for the transition maps it follows then that ¢*((1 — 01)d@) = ¢(t) dt where g(t) =1 — f(t + 7)
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fort € (—n 0) and g( )=1—f(t—m) for t € (0,n) (in particular, g(¢) = 1 in a neighbourhood of ¢ = 0). Thus,
Jav=["_(f g(t)) dt = 2r.

2. Manifolds with boundary and Stokes’ theorem. An atlas with boundary in the set M is the set of triples
{(Ua-Va,24)} having all the properties of an atlas on a manifold, with one exception: for some systems of coor-

dinates V,, C R™ is an open set (like for a manifold; these are called internal systems), while for other systems of

coordinates V, = V, NR™ where V, C R” is an open subset and R? %' {(z1,---,7n) € R® | 3y < 0}; these are

called boundary systems. Transition maps ¢, now are either smooth maps deﬁned in open subsets V,3 C R" or
restrictions of smooth maps defined in open subsets VaB C R” to the intersections V5 = Vag NR™.

Definition. A point a € M is called a point of the boundary if a € U, for some boundary system of coordinates

(U, Vo, o) and zq(a) € RY € {(0,22,...,2,) | 22,...,2, € R}. The boundary (the set of all points of the

boundary) is denoted OM.

Lemma 2. If a € OM and a € U, for some system of coordinates (Uy,Vy,xo) then this system of coordinates is
boundary and x,(a) € RY.

Proof. Suppose z,(a) is an internal point of V,, (that is, (U,,Va,2s) is an internal system of coordinates, or
it is a boundary system of coordinates but z,(a) ¢ R). Since a € OM, there exists a boundary system of
coordinates (Ug, V3, 23) such that a € Up and z5(a) € Rfj. The transition map ¢g, : Vao — Vap is a restriction
of a diffeomorphism ¢g, : Vga — W C R" defined in an open subset V@a C R” to the intersection Vg, =
Vsa NR™. By assumption we have 13,(25(a)) = z.(a) ¢ RZ; hence there exists e > 0 such that the ball
B.(z4(a)) = {y | ly —za(a)| < €} is a subset of V,3. The map s, is continuous, so there exists a § > 0
such that ¢¥g4(Bs(zs(a))) C Be(zq(a)) C Vos. Thus 1a5(Vag) DO Bs(zs(a)). Since zz(a) € Rf, the intersection
Bs(z(a)) NRY # @, 50 Yap(Vap) NRY # & contrary to ¥as(Vas) = Vaa C R2. O

Denote by p : R¥ — R"~! the natural identification (deletion of the leading zero). Let (U, Vs, z.) be a boundary

coordinate system on M. Take U, U n oM, V, d—pr(V NRE) C R" ! and Z, d:pr ° Talynsr-

Theorem 1. {(Uy,Va,%a)} is an (n — 1)-dimensional atlas for OM. If {(Us,Va,2a)} is oriented then this atlas
is oriented, too.

Proof. Proof of the properties of an atlas for {(U,, Vi, #a)} is a routine check. The only statement worth proving
is orientability.

Let o5 : Vag — Vg be a transition map between two boundary coordinate systems on M; explicitly
Yap(U1,...,uy) = def (filury . yun)y ooy fr(ur, ..o uy)). Here uy < 0, fi(ur,...,u,) < 0, and by Lemma 2
2L 0,uz,..yun) O L 0
%(0,”2, 7un) ~
f1(0,ug,. .., up) = 0. Hence 95(0,uz,...,u,) = ) . where 9,3 is the
, : w’aﬁ(uz,...,un)
85; (O,Uz,...,un) .
transition map for the atlas on M. So det ), 5(0,uz,...,u,) = 6f1 (0, u2, . . .y up) det g g (u2, . . ., un) > 0. Since
fi(u,...,u,) <0 for all u; <0, one has 2 S (O U2y v oy Uy) >0, and therefore det @Z;B(U2, ceyUp) > 0. O

Theorem 2 (Stokes). Let M be an oriented manifold with boundary, and 1 : OM — M is the tautological embedding
(W(a) = a for any a € OM C M). Let w be a (n — 1)-form with compact support on M. Then [, dw = [5, t*w.

Proof. Let first M = R® = {(z1,...,2,) € R? | 2y <0}, so M = R" . Then w = fi(z)dxs A -+ Adxy, +

fo(x)dxy Ndxg A - Ndxy + -+ + fo(x)dey Ao ANdxp—q, t'w = f1(0,29,,...,2,)des A -+ Adzy, and dw =
(%(w) — 37{2(33) +-F (—1)”_1%(33)) dzi A - Ndxy,.
Without loss of generality suppw C [—1,0]". Then for ¢ = 2,...,n one has fRn Ofs tdry A ANdz, =
f[—l,O}"*l ( 0 6fl dxz) dzy ...dzi...dz, = f[_LO]n,l(fi(xl, e 0y —filmy, .o, =1, ) day cdz;...de, =
0, and for 7 = 1 one has in a similar manner fR" g—ﬁdazz/v - Ndz,, = f[71 O]W,l(fl(O,:cz, ces ) —fu(=Lxa, ... xy)) das . .. day =

Jono1 fn(0,22,. . 2n)des .. dey, = fBR'ﬁ w.

For an arbitrary M let {(Uy,Va,Zo)} be an oriented locally finite atlas, and {p,} be a partition of unity
subordinate to {(U,}. The support suppw is compact, so it intersects only a finite number of charts: suppw C
UyU---UUy and suppwnNU, = @ for a #1,...,N. Then w = Zf\; oiw. By linearity it suffices to prove the

def .
theorem for every form wz = gw,i=1,...,N.
Now [y dwi = [, (z; " )*dw; = [y, d(z;")*w; (due to naturality of d) = = Sy e (@7 "Y*w; (proved above)

= fasz O



Ezample 2. Let f : C — C be a holomorphic function, and v ef f(z)dz ef f(z)(dz + idy) be a 1-form with

complex values (z = x + iy where z,y € R are coordinates on C = R? viewed as a (real) 2-manifold). If

flz+iy) (x,y) + ih(z,y) where g,h : R? — R are smooth functions then v = (gdz — hdy) + i(gdy + hdzx) and

dv = ((—% — %) + i(% — g—g)) dz A dy = 0 by the Cauchy—Riemann theorem. Let M C C be diffeomorphic to a

disc, with its boundary M = ([0, 1]) where v : [0, 1] — Cis a smooth curve. Then [, f(z) dz = f01 Y (f(z)dz) =
fol F(y(#)Y'(t)dt = [,, dv =0 — one of the principal theorems of elementary complex analysis.

If f: C — C is holomorphic in C\ {0}, and M C C\ {0} is diffeomorphic to an annulus, with its boundary
OM = v ([0,1]) U ¥2([0,1]) where 71,72 : [0,1] — C are smooth curves. Like in the previous case one obtains
0= [y f(z)dz = fol Yi(f(2)dz) — fol v5(f(2) dz) (the minus sign is due to orienation). So, fol v*(f(2) dz) is the
same for all curves «y encircling the origin in the counterclockwise direction. This number (not necessarily zero!)
divided by 2mi is called the residue of the 1-form f(z)dz at the origin.

def
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