
HSE, FALL 2016 FOUNDATIONS OF DIFFERENTIAL GEOMETRY

LECTURE 7

Abstract. Integration of di�erential forms. Stokes' theorem.

1. Integration of forms. For a di�erential form ! its support supp! is de�ned as the closure of the set {a ∈
M | !(a) 6= 0} ⊂ M . From now on let M be an oriented n-dimensional manifold and !, a n-form (the same n!)
with compact support on it.

Let �rst M = U ⊂ Rn be an open subset. Then the form ! looks as !(x) = f(x) dx1 ∧ · · · ∧ dxn where
supp f ⊂ U is compact. The integral

∫
U ! is de�ned as the Riemann integral

∫
U f(x) dx1 : : : dxn (f is smooth,

hence continuous, and therefore Riemann integrable).
Lemma 1. Let U1; U2 ⊂ Rn be open subsets, and h : U1 → U2 be a di�eomorphism such that deth′(x) > 0 for any
x ∈ U1. Let supp! ⊂ U2 be compact. Then

∫
U2
! =

∫
U1
h∗!.

Proof. Let h(x) = (h1(x1; : : : ; xn); : : : ; hn(x1; : : : ; xn)); then
h∗!(x) = f(h(x))dh∗x1 ∧ · · · ∧ dh∗xn = f(h(x))dh1(x) ∧ · · · ∧ dhn(x)

=
n∑

i1;:::;in=1
f(h(x)) @h1

@xi1
: : : @hn@xin

dxi1 ∧ · · · ∧ dxin =
∑

�∈Sn
(−1)parity of � @h1

@xi1
: : : @hn@xin

dx1 ∧ · · · ∧ dxn

= deth′(x)f(h(x)) dx1 ∧ · · · ∧ dxn:
Now the lemma follows from the change of variables formula for the n-dimensional integral (the absolute value sign
in this formula is unnecessary here because deth′(x) > 0). ¤

Let now M be any manifold with an oriented atlas {(U�:V�; x�)}, and let {%�} be a partition of unity subordinate
to {U�}.
De�nition 1.

∫
M ! = ∑

�
∫
V�(x−1

� )∗(%�!).

Proposition 1. De�nition 1 is sound: if {( ~U�: ~V�; ~x�)} is another atlas on M with the same orientation, and ~%�
is a partition of unity subordinate to { ~U�} then

∫
M ! de�ned by means of this partition is equal to that of De�nition

1.
Proof. Let a ∈ U� ∩ ~U� , V�� = x�(U� ∩ ~U�) ⊂ V�, V�� = ~x�(U� ∩ ~U�) ⊂ ~V� . The transition map '�� = x�~x−1

� :
V�� → V�� is a di�eomorphism; once the two atlases have the same orientation, det'′��(u) > 0 for any u.

Now one has∑
�

∫
V�(x−1

� )∗(%�!) = ∑
�;�

∫
V�(x−1

� )∗(%�~%�!) because ∑
� ~%� ≡ 1

= ∑
�;�

∫
V�� (x−1

� )∗(~%�%�!) because supp %� ∩ supp ~%� ⊂ U� ∩ ~U�
= ∑
�;�

∫
V�� '

∗
��(x−1

� )∗(~%�%�!) by Lemma 1

= ∑
�;�

∫
V�� %�(~x−1

� )∗(~%�!) = ∑
�

∫
V� (~x−1

� )∗(~%�!) because ∑
� %� ≡ 1:

¤

Example 1. Let S1 ⊂ R2 be a unit circle centered at the origin. The tangent space TaS1 is naturally identi�ed
with the line {v ∈ R2 | (a; v) = 0} where (·; ·) is the standard scalar product. Let �a : TaS1 → R be a linear
functional such that for any v ∈ TaS1 one has �a(v) = |v| if v is directed counterclockwise from the vector a, and
�a(v) = − |v| if v is directed clockwise. Thus a 7→ �a is a di�erential 1-form on S1.

Consider at S1 an atlas {(U1; (−�; �); '); (U2; (−�; �); ~')} described at Example 5 of Lecture 6: U1 = S1 \ {a},
U2 = S1 \ {b} where a; b ∈ S1 are two opposite points, ' and ~' are polar angles measured counterclockwise with
'(b) = 0 and ~'(a) = 0, respectively. The transition maps are  (u) = u− � in the lower arc ab and  (u) = u+ �
in the upper arc. The 1-form described above is d' = d ~'.

Let %1; %2 = 1−%1 be a partition of unity subordinate to {U1; U2}. Thus, supp %1 ⊂ U1, so %1(x) = 0 =⇒ %2(x) =
1 in a neighbourhood of a, and vice versa in a neighbourhood of b. Hence '∗(%1d') = f(t) dx where f : (−�; �)
is a smooth function such that f(t) ≡ 1 in a neighbourhood of t = 0 and f(t) ≡ 0 in neighbourhoods of t = ±�.
From the formulas for the transition maps it follows then that ~'∗((1− %1)d ~') = g(t) dt where g(t) = 1− f(t+ �)

1



for t ∈ (−�; 0) and g(t) = 1 − f(t − �) for t ∈ (0; �) (in particular, g(t) ≡ 1 in a neighbourhood of t = 0). Thus,∫
S1 � =

∫ �
−�(f(t) + g(t)) dt = 2�.

2. Manifolds with boundary and Stokes' theorem. An atlas with boundary in the set M is the set of triples
{(U�:V�; x�)} having all the properties of an atlas on a manifold, with one exception: for some systems of coor-
dinates V� ⊂ Rn is an open set (like for a manifold; these are called internal systems), while for other systems of
coordinates V� = ~V� ∩ Rn− where ~V� ⊂ Rn is an open subset and Rn−

def= {(x1; : : : ; xn) ∈ Rn | x1 ≤ 0}; these are
called boundary systems. Transition maps '�� now are either smooth maps de�ned in open subsets V�� ⊂ Rn or
restrictions of smooth maps de�ned in open subsets ~V�� ⊂ Rn to the intersections V�� = ~V�� ∩ Rn−.
De�nition. A point a ∈ M is called a point of the boundary if a ∈ U� for some boundary system of coordinates
(U�; V�; x�) and x�(a) ∈ Rn0 def= {(0; x2; : : : ; xn) | x2; : : : ; xn ∈ R}. The boundary (the set of all points of the
boundary) is denoted @M .
Lemma 2. If a ∈ @M and a ∈ U� for some system of coordinates (U�; V�; x�) then this system of coordinates is
boundary and x�(a) ∈ Rn0 .
Proof. Suppose x�(a) is an internal point of V� (that is, (U�; V�; x�) is an internal system of coordinates, or
it is a boundary system of coordinates but x�(a) =∈ Rn0 ). Since a ∈ @M , there exists a boundary system of
coordinates (U� ; V� ; x�) such that a ∈ U� and x�(a) ∈ Rn0 . The transition map '�� : V�� → V�� is a restriction
of a di�eomorphism '�� : ~V�� → W ⊂ Rn de�ned in an open subset ~V�� ⊂ Rn to the intersection V�� =
~V�� ∩ Rn−. By assumption we have  ��(x�(a)) = x�(a) =∈ Rn0 ; hence there exists " > 0 such that the ball
B"(x�(a)) = {y | |y − x�(a)| < "} is a subset of V�� . The map  �� is continuous, so there exists a � > 0
such that  ��(B�(x�(a))) ⊂ B"(x�(a)) ⊂ V�� . Thus  ��(V��) ⊃ B�(x�(a)). Since x�(a) ∈ Rn0 , the intersection
B�(x�(a)) ∩ Rn+ 6= ∅, so  ��(V��) ∩ Rn+ 6= ∅ contrary to  ��(V��) = V�� ⊂ Rn−. ¤

Denote by p : Rn0 → Rn−1 the natural identi�cation (deletion of the leading zero). Let (U�; V�; x�) be a boundary
coordinate system on M . Take ~U� def= U� ∩ @M , ~V� def= p(V� ∩ Rn0 ) ⊂ Rn−1 and ~x� def= p ◦ x�|@M .

Theorem 1. {( ~U�; ~V�; ~x�)} is an (n− 1)-dimensional atlas for @M . If {(U�; V�; x�)} is oriented then this atlas
is oriented, too.
Proof. Proof of the properties of an atlas for {( ~U�; ~V�; ~x�)} is a routine check. The only statement worth proving
is orientability.

Let  �� : V�� → V�� be a transition map between two boundary coordinate systems on M ; explicitly
 ��(u1; : : : ; un) def= (f1(u1; : : : ; un); : : : ; fn(u1; : : : ; un)). Here u1 ≤ 0, f1(u1; : : : ; un) ≤ 0, and by Lemma 2

f1(0; u2; : : : ; un) ≡ 0. Hence  ′��(0; u2; : : : ; un) =




@f1
@u1

(0; u2; : : : ; un) 0 : : : 0
@f2
@u1

(0; u2; : : : ; un)
... ~ ′��(u2; : : : ; un)

@fn
@u1

(0; u2; : : : ; un)




where ~ �� is the

transition map for the atlas on @M . So det ′��(0; u2; : : : ; un) = @f1
@u1

(0; u2; : : : ; un) det ~ ′��(u2; : : : ; un) > 0. Since
f1(u1; : : : ; un) ≤ 0 for all u1 ≤ 0, one has @f1

@u1
(0; u2; : : : ; un) > 0, and therefore det ~ ′��(u2; : : : ; un) > 0. ¤

Theorem 2 (Stokes). Let M be an oriented manifold with boundary, and � : @M →M is the tautological embedding
(�(a) = a for any a ∈ @M ⊂M). Let ! be a (n− 1)-form with compact support on M . Then

∫
M d! =

∫
@M �∗!.

Proof. Let �rst M = Rn− = {(x1; : : : ; xn) ∈ Rn | x1 ≤ 0}, so @M = Rn−1. Then ! = f1(x) dx2 ∧ · · · ∧ dxn +
f2(x) dx1 ∧ dx3 ∧ · · · ∧ dxn + · · · + fn(x) dx1 ∧ · · · ∧ dxn−1, �∗! = f1(0; x2; ; : : : ; xn) dx2 ∧ · · · ∧ dxn and d! =
( @f1
@x1

(x)− @f2
@x2

(x) + · · ·+ (−1)n−1 @fn
@xn (x)) dx1 ∧ · · · ∧ dxn.

Without loss of generality supp! ⊂ [−1; 0]n. Then for i = 2; : : : ; n one has
∫
Rn−

@fi
@xi dx1 ∧ · · · ∧ dxn =

∫
[−1;0]n−1

(∫ 0
−1

@fi
@xi dxi

)
dx1 : : : d̂xi : : : dxn =

∫
[−1;0]n−1(fi(x1; : : : ; 0; : : : ; xn)−fi(x1; : : : ;−1; : : : ; xn)dx1 : : : d̂xi : : : dxn =

0, and for i = 1 one has in a similar manner
∫
Rn−

@f1
@x1

dx2∧· · ·∧dxn =
∫

[−1;0]n−1(f1(0; x2; : : : ; xn)−fn(−1; x2; : : : ; xn)) dx2 : : : dxn =∫
Rn−1 fn(0; x2; : : : ; xn)dx2 : : : dxn =

∫
@Rn−

�∗!.
For an arbitrary M let {(U�; V�; x�)} be an oriented locally �nite atlas, and {%�} be a partition of unity

subordinate to {(U�}. The support supp! is compact, so it intersects only a �nite number of charts: supp! ⊂
U1 ∪ · · · ∪ UN and supp! ∩ U� = ∅ for � 6= 1; : : : ; N . Then ! = ∑N

i=1 %i!. By linearity it su�ces to prove the
theorem for every form !i def= %i!, i = 1; : : : ; N .

Now
∫
M d!i =

∫
Vi(x

−1
i )∗d!i =

∫
Vi d(x−1

i )∗!i (due to naturality of d) =
∫
Vi∩Rn−1(x−1

i )∗!i (proved above)
=

∫
@M !i. ¤



Example 2. Let f : C → C be a holomorphic function, and � def= f(z) dz def= f(z)(dx + idy) be a 1-form with
complex values (z = x + iy where x; y ∈ R are coordinates on C = R2 viewed as a (real) 2-manifold). If
f(x+ iy) def= g(x; y) + ih(x; y) where g; h : R2 → R are smooth functions then � = (gdx− hdy) + i(gdy + hdx) and
d� =

(
(−@g

@y − @h
@x ) + i( @g@x − @h

@y )
)
dx ∧ dy = 0 by the Cauchy{Riemann theorem. Let M ⊂ C be di�eomorphic to a

disc, with its boundary @M = ([0; 1]) where  : [0; 1] → C is a smooth curve. Then
∫
@M f(z) dz =

∫ 1
0 ∗(f(z) dz) =∫ 1

0 f((t))′(t) dt =
∫
M d� = 0 | one of the principal theorems of elementary complex analysis.

If f : C → C is holomorphic in C \ {0}, and M ⊂ C \ {0} is di�eomorphic to an annulus, with its boundary
@M = 1([0; 1]) ∪ 2([0; 1]) where 1; 2 : [0; 1] → C are smooth curves. Like in the previous case one obtains
0 =

∫
@M f(z) dz =

∫ 1
0 ∗1 (f(z) dz) − ∫ 1

0 ∗2(f(z) dz) (the minus sign is due to orienation). So,
∫ 1

0 ∗(f(z) dz) is the
same for all curves  encircling the origin in the counterclockwise direction. This number (not necessarily zero!)
divided by 2�i is called the residue of the 1-form f(z) dz at the origin.


