LECTURE 7

ABSTRACT. Integration of differential forms. Stokes' theorem.

1. Integration of forms. For a differential form ω its support supp ω is defined as the closure of the set $\{a \in M \mid \omega(a) \neq 0\} \subset M$. From now on let M be an oriented *n*-dimensional manifold and ω , a *n*-form (the same n!) with compact support on it.

Let first $M = U \subset \mathbb{R}^n$ be an open subset. Then the form ω looks as $\omega(x) = f(x) dx_1 \wedge \cdots \wedge dx_n$ where supp $f \subset U$ is compact. The integral $\int_U \omega$ is defined as the Riemann integral $\int_U f(x) dx_1 \dots dx_n$ (f is smooth, hence continuous, and therefore Riemann integrable).

Lemma 1. Let $U_1, U_2 \subset \mathbb{R}^n$ be open subsets, and $h: U_1 \to U_2$ be a diffeomorphism such that det h'(x) > 0 for any $x \in U_1$. Let supp $\omega \subset U_2$ be compact. Then $\int_{U_2} \omega = \int_{U_1} h^* \omega$.

Proof. Let $h(x) = (h_1(x_1, ..., x_n), ..., h_n(x_1, ..., x_n))$; then

$$\begin{aligned} h^*\omega(x) &= f(h(x))dh^*x_1 \wedge \dots \wedge dh^*x_n = f(h(x))dh_1(x) \wedge \dots \wedge dh_n(x) \\ &= \sum_{i_1,\dots,i_n=1}^n f(h(x))\frac{\partial h_1}{\partial x_{i_1}}\dots \frac{\partial h_n}{\partial x_{i_n}} dx_{i_1} \wedge \dots \wedge dx_{i_n} = \sum_{\sigma \in S_n} (-1)^{\text{parity of }\sigma} \frac{\partial h_1}{\partial x_{i_1}}\dots \frac{\partial h_n}{\partial x_{i_n}} dx_1 \wedge \dots \wedge dx_n \\ &= \det h'(x)f(h(x)) dx_1 \wedge \dots \wedge dx_n. \end{aligned}$$

Now the lemma follows from the change of variables formula for the *n*-dimensional integral (the absolute value sign in this formula is unnecessary here because det h'(x) > 0).

Let now M be any manifold with an oriented atlas $\{(U_{\alpha}, V_{\alpha}, x_{\alpha})\}$, and let $\{\varrho_{\alpha}\}$ be a partition of unity subordinate to $\{U_{\alpha}\}$.

Definition 1. $\int_M \omega = \sum_{\alpha} \int_{V_{\alpha}} (x_{\alpha}^{-1})^* (\varrho_{\alpha} \omega).$

Proposition 1. Definition 1 is sound: if $\{(\tilde{U}_{\alpha}, \tilde{V}_{\alpha}, \tilde{x}_{\alpha})\}$ is another atlas on M with the same orientation, and $\tilde{\varrho}_{\alpha}$ is a partition of unity subordinate to $\{\tilde{U}_{\alpha}\}$ then $\int_{M} \omega$ defined by means of this partition is equal to that of Definition 1.

Proof. Let $a \in U_{\alpha} \cap \tilde{U}_{\beta}$, $V_{\alpha\beta} = x_{\alpha}(U_{\alpha} \cap \tilde{U}_{\beta}) \subset V_{\alpha}$, $V_{\beta\alpha} = \tilde{x}_{\beta}(U_{\alpha} \cap \tilde{U}_{\beta}) \subset \tilde{V}_{\beta}$. The transition map $\varphi_{\beta\alpha} = x_{\alpha}\tilde{x}_{\beta}^{-1}$: $V_{\beta\alpha} \to V_{\alpha\beta}$ is a diffeomorphism; once the two atlases have the same orientation, det $\varphi'_{\beta\alpha}(u) > 0$ for any u. Now one has

$$\begin{split} \sum_{\alpha} & \int_{V_{\alpha}} (x_{\alpha}^{-1})^{*} (\varrho_{\alpha}\omega) = \sum_{\alpha,\beta} \int_{V_{\alpha}} (x_{\alpha}^{-1})^{*} (\varrho_{\alpha}\tilde{\varrho}_{\beta}\omega) & \text{because } \sum_{\beta} \tilde{\varrho}_{\beta} \equiv 1 \\ & = \sum_{\alpha,\beta} \int_{V_{\alpha\beta}} (x_{\alpha}^{-1})^{*} (\tilde{\varrho}_{\beta}\varrho_{\alpha}\omega) & \text{because supp } \varrho_{\alpha} \cap \text{supp } \tilde{\varrho}_{\beta} \subset U_{\alpha} \cap \tilde{U}_{\beta} \\ & = \sum_{\alpha,\beta} \int_{V_{\beta\alpha}} \varphi_{\beta\alpha}^{*} (x_{\alpha}^{-1})^{*} (\tilde{\varrho}_{\beta}\varrho_{\alpha}\omega) & \text{by Lemma 1} \\ & = \sum_{\alpha,\beta} \int_{V_{\beta\alpha}} \varrho_{\alpha} (\tilde{x}_{\beta}^{-1})^{*} (\tilde{\varrho}_{\beta}\omega) = \sum_{\beta} \int_{V_{\beta}} (\tilde{x}_{\beta}^{-1})^{*} (\tilde{\varrho}_{\beta}\omega) & \text{because } \sum_{\alpha} \varrho_{\alpha} \equiv 1. \end{split}$$

Example 1. Let $S^1 \subset \mathbb{R}^2$ be a unit circle centered at the origin. The tangent space $T_a S^1$ is naturally identified with the line $\{v \in \mathbb{R}^2 \mid (a, v) = 0\}$ where (\cdot, \cdot) is the standard scalar product. Let $\nu_a : T_a S^1 \to \mathbb{R}$ be a linear functional such that for any $v \in T_a S^1$ one has $\nu_a(v) = |v|$ if v is directed counterclockwise from the vector a, and $\nu_a(v) = -|v|$ if v is directed clockwise. Thus $a \mapsto \nu_a$ is a differential 1-form on S^1 .

Consider at S^1 an atlas $\{(U_1, (-\pi, \pi), \varphi), (U_2, (-\pi, \pi), \tilde{\varphi})\}$ described at Example 5 of Lecture 6: $U_1 = S^1 \setminus \{a\}, U_2 = S^1 \setminus \{b\}$ where $a, b \in S^1$ are two opposite points, φ and $\tilde{\varphi}$ are polar angles measured counterclockwise with $\varphi(b) = 0$ and $\tilde{\varphi}(a) = 0$, respectively. The transition maps are $\psi(u) = u - \pi$ in the lower arc ab and $\psi(u) = u + \pi$ in the upper arc. The 1-form described above is $d\varphi = d\tilde{\varphi}$.

Let $\varrho_1, \varrho_2 = 1 - \varrho_1$ be a partition of unity subordinate to $\{U_1, U_2\}$. Thus, $\sup \rho_1 \subset U_1$, $\sup \rho_1(x) = 0 \Longrightarrow \rho_2(x) = 1$ in a neighbourhood of a, and vice versa in a neighbourhood of b. Hence $\varphi^*(\varrho_1 d\varphi) = f(t) dx$ where $f: (-\pi, \pi)$ is a smooth function such that $f(t) \equiv 1$ in a neighbourhood of t = 0 and $f(t) \equiv 0$ in neighbourhoods of $t = \pm \pi$. From the formulas for the transition maps it follows then that $\tilde{\varphi}^*((1-\varrho_1)d\tilde{\varphi}) = g(t) dt$ where $g(t) = 1 - f(t+\pi)$

for $t \in (-\pi, 0)$ and $g(t) = 1 - f(t - \pi)$ for $t \in (0, \pi)$ (in particular, $g(t) \equiv 1$ in a neighbourhood of t = 0). Thus, $\int_{S^1} \nu = \int_{-\pi}^{\pi} (f(t) + g(t)) \, dt = 2\pi.$

2. Manifolds with boundary and Stokes' theorem. An atlas with boundary in the set M is the set of triples $\{(U_{\alpha}, V_{\alpha}, x_{\alpha})\}$ having all the properties of an atlas on a manifold, with one exception: for some systems of coordinates $V_{\alpha} \subset \mathbb{R}^n$ is an open set (like for a manifold; these are called internal systems), while for other systems of coordinates $V_{\alpha} = \tilde{V}_{\alpha} \cap \mathbb{R}^{n}_{-}$ where $\tilde{V}_{\alpha} \subset \mathbb{R}^{n}$ is an open subset and $\mathbb{R}^{n}_{-} \stackrel{\text{def}}{=} \{(x_{1}, \ldots, x_{n}) \in \mathbb{R}^{n} \mid x_{1} \leq 0\}$; these are called boundary systems. Transition maps $\varphi_{\alpha\beta}$ now are either smooth maps defined in open subsets $V_{\alpha\beta} \subset \mathbb{R}^{n}$ or restrictions of smooth maps defined in open subsets $\tilde{V}_{\alpha\beta} \subset \mathbb{R}^n$ to the intersections $V_{\alpha\beta} = \tilde{V}_{\alpha\beta} \cap \mathbb{R}^n_-$.

Definition. A point $a \in M$ is called a point of the boundary if $a \in U_{\alpha}$ for some boundary system of coordinates $(U_{\alpha}, V_{\alpha}, x_{\alpha})$ and $x_{\alpha}(a) \in \mathbb{R}_0^n \stackrel{\text{def}}{=} \{(0, x_2, \dots, x_n) \mid x_2, \dots, x_n \in \mathbb{R}\}$. The boundary (the set of all points of the boundary) is denoted ∂M .

Lemma 2. If $a \in \partial M$ and $a \in U_{\alpha}$ for some system of coordinates $(U_{\alpha}, V_{\alpha}, x_{\alpha})$ then this system of coordinates is boundary and $x_{\alpha}(a) \in \mathbb{R}_0^n$.

Proof. Suppose $x_{\alpha}(a)$ is an internal point of V_{α} (that is, $(U_{\alpha}, V_{\alpha}, x_{\alpha})$ is an internal system of coordinates, or it is a boundary system of coordinates but $x_{\alpha}(a) \notin \mathbb{R}^n_0$. Since $a \in \partial M$, there exists a boundary system of coordinates $(U_{\beta}, V_{\beta}, x_{\beta})$ such that $a \in U_{\beta}$ and $x_{\beta}(a) \in \mathbb{R}_{0}^{n}$. The transition map $\varphi_{\beta\alpha} : V_{\beta\alpha} \to V_{\alpha\beta}$ is a restriction of a diffeomorphism $\varphi_{\beta\alpha}$: $\tilde{V}_{\beta\alpha} \to W \subset \mathbb{R}^n$ defined in an open subset $\tilde{V}_{\beta\alpha} \subset \mathbb{R}^n$ to the intersection $V_{\beta\alpha} =$ $\tilde{V}_{\beta\alpha} \cap \mathbb{R}^n_-$. By assumption we have $\psi_{\beta\alpha}(x_\beta(a)) = x_\alpha(a) \notin \mathbb{R}^n_0$; hence there exists $\varepsilon > 0$ such that the ball $B_{\varepsilon}(x_{\alpha}(a)) = \{y \mid |y - x_{\alpha}(a)| < \varepsilon\}$ is a subset of $V_{\alpha\beta}$. The map $\psi_{\beta\alpha}$ is continuous, so there exists a $\delta > 0$ such that $\psi_{\beta\alpha}(B_{\delta}(x_{\beta}(a))) \subset B_{\varepsilon}(x_{\alpha}(a)) \subset V_{\alpha\beta}$. Thus $\psi_{\alpha\beta}(V_{\alpha\beta}) \supset B_{\delta}(x_{\beta}(a))$. Since $x_{\beta}(a) \in \mathbb{R}^{n}_{0}$, the intersection $B_{\delta}(x_{\beta}(a)) \cap \mathbb{R}^{n}_{+} \neq \emptyset$, so $\psi_{\alpha\beta}(V_{\alpha\beta}) \cap \mathbb{R}^{n}_{+} \neq \emptyset$ contrary to $\psi_{\alpha\beta}(V_{\alpha\beta}) = V_{\beta\alpha} \subset \mathbb{R}^{n}_{-}$. \square

Denote by $p: \mathbb{R}^n_0 \to \mathbb{R}^{n-1}$ the natural identification (deletion of the leading zero). Let $(U_\alpha, V_\alpha, x_\alpha)$ be a boundary coordinate system on M. Take $\tilde{U}_{\alpha} \stackrel{\text{def}}{=} U_{\alpha} \cap \partial M$, $\tilde{V}_{\alpha} \stackrel{\text{def}}{=} p(V_{\alpha} \cap \mathbb{R}^{n}_{0}) \subset \mathbb{R}^{n-1}$ and $\tilde{x}_{\alpha} \stackrel{\text{def}}{=} p \circ x_{\alpha}|_{\partial M}$.

Theorem 1. $\{(\tilde{U}_{\alpha}, \tilde{V}_{\alpha}, \tilde{x}_{\alpha})\}$ is an (n-1)-dimensional atlas for ∂M . If $\{(U_{\alpha}, V_{\alpha}, x_{\alpha})\}$ is oriented then this atlas is oriented, too.

Proof. Proof of the properties of an atlas for $\{(\tilde{U}_{\alpha}, \tilde{V}_{\alpha}, \tilde{x}_{\alpha})\}$ is a routine check. The only statement worth proving is orientability.

Let $\psi_{\alpha\beta}$: $V_{\alpha\beta} \rightarrow V_{\beta\alpha}$ be a transition map between two boundary coordinate systems on M; explicitly $\psi_{\alpha\beta}(u_1,\ldots,u_n) \stackrel{\text{def}}{=} (f_1(u_1,\ldots,u_n),\ldots,f_n(u_1,\ldots,u_n)). \text{ Here } u_1 \leq 0, f_1(u_1,\ldots,u_n) \leq 0, \text{ and by Lemma 2}$ $f_1(0,u_2,\ldots,u_n) \equiv 0. \text{ Hence } \psi'_{\alpha\beta}(0,u_2,\ldots,u_n) = \begin{pmatrix} \frac{\partial f_1}{\partial u_1}(0,u_2,\ldots,u_n) & 0 & \ldots & 0\\ \frac{\partial f_2}{\partial u_1}(0,u_2,\ldots,u_n) & 0 & \ldots & 0\\ \vdots & \tilde{\psi}'_{\alpha\beta}(u_2,\ldots,u_n) \\ \frac{\partial f_n}{\partial u_1}(0,u_2,\ldots,u_n) & \end{pmatrix} \text{ where } \tilde{\psi}_{\alpha\beta} \text{ is the }$

transition map for the atlas on ∂M . So det $\psi'_{\alpha\beta}(0, u_2, \dots, u_n) = \frac{\partial f_1}{\partial u_1}(0, u_2, \dots, u_n) \det \tilde{\psi}'_{\alpha\beta}(u_2, \dots, u_n) > 0$. Since

 $f_1(u_1,\ldots,u_n) \leq 0$ for all $u_1 \leq 0$, one has $\frac{\partial f_1}{\partial u_1}(0,u_2,\ldots,u_n) > 0$, and therefore det $\tilde{\psi}'_{\alpha\beta}(u_2,\ldots,u_n) > 0$.

Theorem 2 (Stokes). Let M be an oriented manifold with boundary, and $\iota : \partial M \to M$ is the tautological embedding $(\iota(a) = a \text{ for any } a \in \partial M \subset M)$. Let ω be a (n-1)-form with compact support on M. Then $\int_M d\omega = \int_{\partial M} \iota^* \omega$.

Proof. Let first $M = \mathbb{R}_{-}^{n} = \{(x_{1}, \dots, x_{n}) \in \mathbb{R}^{n} \mid x_{1} \leq 0\}$, so $\partial M = \mathbb{R}^{n-1}$. Then $\omega = f_{1}(x) dx_{2} \wedge \dots \wedge dx_{n} + f_{2}(x) dx_{1} \wedge dx_{3} \wedge \dots \wedge dx_{n} + \dots + f_{n}(x) dx_{1} \wedge \dots \wedge dx_{n-1}$, $\iota^{*}\omega = f_{1}(0, x_{2}, \dots, x_{n}) dx_{2} \wedge \dots \wedge dx_{n}$ and $d\omega = (\frac{\partial f_{1}}{\partial x_{1}}(x) - \frac{\partial f_{2}}{\partial x_{2}}(x) + \dots + (-1)^{n-1} \frac{\partial f_{n}}{\partial x_{n}}(x)) dx_{1} \wedge \dots \wedge dx_{n}$. Without loss of generality $\operatorname{supp} \omega \subset [-1, 0]^{n}$. Then for $i = 2, \dots, n$ one has $\int_{\mathbb{R}_{-}^{n}} \frac{\partial f_{i}}{\partial x_{i}} dx_{1} \wedge \dots \wedge dx_{n} = 0$.

 $\int_{[-1,0]^{n-1}} \left(\int_{-1}^{0} \frac{\partial f_i}{\partial x_i} dx_i \right) dx_1 \dots \widehat{dx_i} \dots dx_n = \int_{[-1,0]^{n-1}} (f_i(x_1,\dots,0,\dots,x_n) - f_i(x_1,\dots,-1,\dots,x_n) dx_1 \dots \widehat{dx_i} \dots dx_n = 0,$ and for i = 1 one has in a similar manner $\int_{\mathbb{R}^n_-} \frac{\partial f_1}{\partial x_1} dx_2 \wedge \dots \wedge dx_n = \int_{[-1,0]^{n-1}} (f_1(0,x_2,\dots,x_n) - f_n(-1,x_2,\dots,x_n)) dx_2 \dots dx_n = 0$ $\int_{\mathbb{R}^{n-1}} f_n(0, x_2, \dots, x_n) dx_2 \dots dx_n = \int_{\partial \mathbb{R}^n} \iota^* \omega.$

For an arbitrary M let $\{(U_{\alpha}, V_{\alpha}, x_{\alpha})\}$ be an oriented locally finite atlas, and $\{\varrho_{\alpha}\}$ be a partition of unity subordinate to $\{(U_{\alpha})\}$. The support supp ω is compact, so it intersects only a finite number of charts: supp $\omega \subset$ $U_1 \cup \cdots \cup U_N$ and $\operatorname{supp} \omega \cap U_\alpha = \emptyset$ for $\alpha \neq 1, \ldots, N$. Then $\omega = \sum_{i=1}^N \varrho_i \omega$. By linearity it suffices to prove the theorem for every form $\omega_i \stackrel{\text{def}}{=} \varrho_i \omega, i = 1, \dots, N.$ Now $\int_M d\omega_i = \int_{V_i} (x_i^{-1})^* d\omega_i = \int_{V_i} d(x_i^{-1})^* \omega_i$ (due to naturality of d) = $\int_{V_i \cap \mathbb{R}^{n-1}} (x_i^{-1})^* \omega_i$ (proved above)

 $=\int_{\partial M}\omega_i.$ Example 2. Let $f : \mathbb{C} \to \mathbb{C}$ be a holomorphic function, and $\nu \stackrel{\text{def}}{=} f(z) dz \stackrel{\text{def}}{=} f(z)(dx + idy)$ be a 1-form with complex values $(z = x + iy \text{ where } x, y \in \mathbb{R} \text{ are coordinates on } \mathbb{C} = \mathbb{R}^2$ viewed as a (real) 2-manifold). If $f(x + iy) \stackrel{\text{def}}{=} g(x, y) + ih(x, y)$ where $g, h : \mathbb{R}^2 \to \mathbb{R}$ are smooth functions then $\nu = (gdx - hdy) + i(gdy + hdx)$ and $d\nu = \left(\left(-\frac{\partial g}{\partial y} - \frac{\partial h}{\partial x}\right) + i\left(\frac{\partial g}{\partial x} - \frac{\partial h}{\partial y}\right)\right) dx \wedge dy = 0$ by the Cauchy–Riemann theorem. Let $M \subset \mathbb{C}$ be diffeomorphic to a disc, with its boundary $\partial M = \gamma([0, 1])$ where $\gamma : [0, 1] \to \mathbb{C}$ is a smooth curve. Then $\int_{\partial M} f(z) dz = \int_0^1 \gamma^*(f(z) dz) = \int_0^1 f(\gamma(t))\gamma'(t) dt = \int_M d\nu = 0$ — one of the principal theorems of elementary complex analysis.

 $\int_{0}^{1} f(\gamma(t))\gamma'(t) dt = \int_{M} d\nu = 0 \quad \text{one of the principal theorems of elementary complex analysis.}$ If $f: \mathbb{C} \to \mathbb{C}$ is holomorphic in $\mathbb{C} \setminus \{0\}$, and $M \subset \mathbb{C} \setminus \{0\}$ is diffeomorphic to an annulus, with its boundary $\partial M = \gamma_1([0,1]) \cup \gamma_2([0,1])$ where $\gamma_1, \gamma_2 : [0,1] \to \mathbb{C}$ are smooth curves. Like in the previous case one obtains $0 = \int_{\partial M} f(z) dz = \int_{0}^{1} \gamma_1^*(f(z) dz) - \int_{0}^{1} \gamma_2^*(f(z) dz)$ (the minus sign is due to orienation). So, $\int_{0}^{1} \gamma^*(f(z) dz)$ is the same for all curves γ encircling the origin in the counterclockwise direction. This number (not necessarily zero!) divided by $2\pi i$ is called the residue of the 1-form f(z) dz at the origin.