LECTURE 6

Abstract. Operations on vector bundles. Differential forms. Orientation.

1. Operations on vector bundles.

1.1. Dual bundle. Let E be a rank n vector bundle on the base $B, B=\bigcup_{\alpha} U_{\alpha}$, a trivialization, and $\psi_{\alpha \beta}$: $U_{\alpha} \cap U_{\beta} \rightarrow \mathrm{GL}(n, \mathbb{R})$, transition maps. Consider maps $\widetilde{\psi}_{\alpha \beta} \stackrel{\text { def }}{=} \psi_{\beta \alpha}^{T}=\left(\left(\psi_{\alpha \beta}\right)^{-1}\right)^{T}$ on the same trivialization $(T$ means a transposed matrix).

Proposition 1. Maps $\widetilde{\psi}_{\alpha \beta}$ satisfy the cocycle condition.
Proof. $\widetilde{\psi}_{\alpha \alpha}=\psi_{\alpha \alpha}^{T}=I^{T}=I$ (the identity matrix). $\widetilde{\psi}_{\alpha \beta} \widetilde{\psi}_{\beta \gamma}=\psi_{\beta \alpha}^{T} \psi_{\gamma \beta}^{T}=\left(\psi_{\gamma \beta} \psi_{\beta \alpha}\right)^{T}=\psi_{\gamma \alpha}^{T}=\widetilde{\psi}_{\alpha \gamma}$.
So, $\widetilde{\psi}_{\alpha \alpha}$ are transition maps of a rank n vector bundle. This bundle is called a dual bundle to E and is denoted E^{*}.

For any vector bundle E and a point $a \in B$ of the base we will be denoting $E_{a} \stackrel{\text { def }}{=} p^{-1}(a)$ the fiber over the point a. Let $v \in E_{a}$ and $\xi \in E_{a}^{*}$. Fix an index α such that $a \in U_{\alpha}$; then v is represented in the corresponding trivializing chart as (a, x, α) and ξ, as (a, η, α). Define the bilinear form $\langle\cdot, \cdot\rangle: E_{a}^{*} \times E_{a} \rightarrow \mathbb{R}$ by $\langle\xi, v\rangle \stackrel{\text { def }}{=}(\eta, x)$ where the braces mean the standard scalar product in \mathbb{R}^{n} (recall that $x, \eta \in \mathbb{R}^{n}$ by the definition of the trivialization). If $x \in U_{\beta}$ then the vectors v and ξ are represented in the corresponding trivialization as $\left(a, x^{\prime}, \beta\right),\left(a, \eta^{\prime}, \beta\right)$ where $x^{\prime}=\psi_{\alpha \beta}(a) x$ and $\eta^{\prime}=\widetilde{\psi}_{\alpha \beta}(a) \eta$. Then the value $\langle\xi, v\rangle$ becomes $\left(\eta^{\prime}, x^{\prime}\right)=\left(\widetilde{\psi}_{\alpha \beta}(a) \eta, \psi_{\alpha \beta}(a) x\right)=\left(\psi_{\alpha \beta}(a)^{T} \psi_{\beta \alpha}(a)^{T} \eta, x\right)=(\eta, x)$, that is, does not change. So, the value $\langle\xi, v\rangle$ is well-defined and does not depend on the choice of a trivializing chart. Since the standard scalar product in \mathbb{R}^{n} is a nondegenerate biliniar form, the form $\langle\cdot, \cdot\rangle: E_{a}^{*} \times E_{a} \rightarrow \mathbb{R}$ also is. So, one can understand E_{a}^{*}, for every $a \in B$, as a dual space to the vector space E_{a}, as the notation suggests.

For a manifold M the bundle dual to the tangent bundle $T M$ is called a contangent bundle and is denoted $T^{*} M$.
Theorem 1. Any real vector bundle on a manifold is equivalent to its dual.
Proof. Since E_{a}^{*} is dual to E_{a} for every a, a linear isomorphism $R_{a}: E_{a} \rightarrow E_{a}^{*}$ is the same as a nondegenerate bilinear form B_{a} on $E_{a}: B_{a}(u, v) \stackrel{\text { def }}{=}\left\langle R_{a}(u), v\right\rangle$, and vice versa, if B_{a} is known then $R_{a}(u): E_{a} \rightarrow \mathbb{R}$ is defined as $R_{a}(u) v \stackrel{\text { def }}{=} B_{a}(u, v)$. If a bilinear form B_{a} is symmetric then it is the same as a quadratic form Q_{a} on $E_{a}: Q_{a}(u)=$ $B_{a}(u, u)$, and vice versa, if Q_{a} is known then a symmetric B_{a} is defined by $B_{a}(u, v)=\frac{1}{2}\left(Q_{a}(u+v)-Q_{a}(u)-Q_{a}(v)\right)$. So, to prove the theorem it is enough to define a nondegenerate quadratic form Q_{a} on every E_{a}, which depend on a continuously (or smoothly, if smooth bundles are considered).

If $a \in U_{\alpha}$ (a trivializing chart for E and E^{*}) and $v \in E_{a}$ is represented by a triple (a, x, α) in the corresponding trivialization, then take $Q_{a}^{(\alpha)}(v) \stackrel{\text { def }}{=}(x, x)$ where braces mean the standard scalar product in \mathbb{R}^{n}. Let then ϱ_{α} be a partition of uniry subordinate to the cover $M=\bigcup_{\alpha} U_{\alpha}$. Define $Q_{a}(v) \stackrel{\text { def }}{=} \sum_{\alpha} \varrho_{\alpha}(a) Q_{a}^{(\alpha)}(v)$. Since the form $Q_{a}^{(\alpha)}$ is positive definite, $\varrho_{\alpha}(a) \geq 0$ and $\sum_{\alpha} \varrho_{\alpha}(a)=1$, the form Q_{a} is positive definite and therefore nondegenerate.

By Theorem 1 the contangent bundle $T^{*} M$ of a manifold M is equivalent to its tangent bundle. Nevertheless the properties of the operation (a functor) T^{*} relating to a manifold its cotangent bundle are quite different from those of the operation (a functor) T relating to a manifold its tangent bundle. In particular, if $f: M_{1} \rightarrow M_{2}$ is a smooth map then there is no analog of the bundle morphism $f^{\prime}: T M_{1} \rightarrow T M_{2}$ for cotangent bundles. At the same time, let ν be a section of the cotangent bundle to the manifold M_{2} (such section is called a differential 1-form on M_{2}; the term will be explained below in Section 2). Then define a section $f^{*} \nu$ of the bundle $T^{*} M_{1}$ as follows: the value of $f^{*} \nu(a)$ where $a \in M_{1}$ is the linear functional on $T_{a} M_{1}$ taking on a vector $u \in T_{a} M_{1}$ the value $\left\langle\nu(a), f^{\prime}(a) u\right\rangle$. The section $f^{*} \nu$ is called a pullback of the 1-form ν to the manifold M_{1}; if M_{1} is a submanifold of M_{2} and f, a tautological embedding (for $a \in M_{1}$ one has $f(a)=a \in M_{2}$), then $f^{*} \nu$ is called a restriction of the form ν to the submanifold. Note that for vector fields (sections of the tangent bundle) the pullback (and even a restriction) cannot be defined: nor a pushforward. For example, a vector $Z(a)$ in the point $a \in M_{1}$ of a submanifold $M_{1} \subset M_{2}$ need not be tangent to M_{1}.

Let M be a manifold, $a \in M$ a point covered by a chart U with the coordinate system $x=\left(x_{1}, \ldots, x_{n}\right)$. A basis in $T_{a}^{*} M$ dual to the basis $\frac{\partial}{\partial x_{1}}(a), \ldots, \frac{\partial}{\partial x_{n}}(a)$ is denoted $d x_{1}(a), \ldots, d x_{n}(a)$ (dual basis means that $\left\langle d x_{i}(a), \frac{\partial}{\partial x_{j}}(a)\right\rangle$ is equal to 1 if $i=j$ and to 0 otherwise).
1.2. Direct sum. Let E_{1}, E_{2} be vector bundles of ranks n_{1}, n_{2} on the same base B. Without loss of generality one can suppose that they have the same set of trivializing charts U_{α} (prove!); denote by $\psi_{\alpha \beta}^{(1)}$ and $\psi_{\alpha \beta}^{(2)}$ the corresponding transition maps. For a point $a \in B$ define a map $\psi_{\alpha \beta}(a) \in \mathrm{GL}\left(n_{1}+n_{2}, \mathbb{R}\right)$ as $\psi_{\alpha \beta}(a) \stackrel{\text { def }}{=} \psi_{\alpha \beta}^{(1)}(a) \oplus \psi_{\alpha \beta}^{(2)}(a)$ (a block diagonal matrix $\left(n_{1}+n_{2}\right) \times\left(n_{1}+n_{2}\right)$ with the $n_{1} \times n_{1}$-block $\psi_{\alpha \beta}^{(1)}(a)$ in the upper left corner and the $n_{2} \times n_{2}$-block $\psi_{\alpha \beta}^{(2)}(a)$ in the lower right; the remaining matrix elements are 0$)$.

Proposition 2. The maps $\psi_{\alpha \beta}$ satisfy the cocycle condition and are therefore transition maps of a vector bundle of rank $n_{1}+n_{2}$ denoted by $E_{1} \oplus E_{2}$. The bundle $E=E_{1} \oplus E_{2}$ contains two subbundles isomorphic to E_{1} and E_{2} and such that $E_{a} \stackrel{\text { def }}{=}\left(E_{1}\right)_{a} \oplus\left(E_{2}\right)_{a}$ for every a (fibers of the subbundles on the right-hand side). (In other words, there are bundle morphisms $\iota_{1}: E_{1} \rightarrow E$ and $\iota_{2}: E_{2} \rightarrow E$ which are embeddings on every fiber, and $\left.E_{a}=\iota_{1}\left(\left(E_{1}\right)_{a}\right) \oplus \iota_{2}\left(\left(E_{2}\right)_{a}\right).\right)$

The proof of Proposition 2 is an exercise and is similar to the proof of Proposition 1 and the reasoning after it.
1.3. Tensor product. Let E_{1}, E_{2} be vector bundles of ranks n_{1}, n_{2} on the same base B; suppose again that they have the same trivialization U_{α} and the transition maps $\psi_{\alpha \beta}^{(1)}$ and $\psi_{\alpha \beta}^{(2)}$. Then define $\psi_{\alpha \beta}(a)=\psi_{\alpha \beta}^{(1)}(a) \otimes \psi_{\alpha \beta}^{(2)}(a) \in$ $\operatorname{GL}\left(n_{1} n_{2}, \mathbb{R}\right)$ (a matrix $n_{1} n_{2} \times n_{1} n_{2}$; its elements are indexed by the pairs of pairs of indices $((i, j),(k, \ell))$ as follows: $\psi_{\alpha \beta}(a)_{(i, j),(k, \ell)}=\psi_{\alpha \beta}^{(1)}(a)_{i k} \psi_{\alpha \beta}^{(2)}(a)_{j l}$; here $i, k=1, \ldots, n_{1}$ and $j, \ell=1, \ldots, n_{2}$.

Proposition 3. The maps $\psi_{\alpha \beta}$ satisfy the cocycle condition and are therefore transition maps of a vector bundle of rank $n_{1} n_{2}$ denoted by $E_{1} \otimes E_{2}$. The fiber $\left(E_{1} \otimes E_{2}\right)_{a}$ is isomorphic to $\left(E_{1}\right)_{a} \otimes\left(E_{2}\right)_{a}$ for every a; this isomorphism can be made smooth on a.

Again, the proof is an exercise.
Example 1. Let $M=\mathbb{R} P^{1}=S^{1}$ and E be a tautological (Moebius) bundle of rank 1 on M (see Problem 1 of Set 3). Its trivialization consists of two charts, $U_{a}=S^{1} \backslash\{a\}$ and $U_{b}=S^{1} \backslash\{b\}$ where a and b are opposite (or any two distinct) points in S^{1}. The intersection $U_{a} \cap U_{b}$ consists of two arcs, A_{1} and A_{2}, and the transition map $\psi(q) \in \operatorname{GL}(1, \mathbb{R})=\mathbb{R} \backslash\{0\}$ is $\psi(q)=1$ for $q \in A_{1}$ and $\psi(q)=-1$ for $q \in A_{2}$. Then the transition map for the tensor square $E^{\otimes 2}=E \otimes E$ is $\psi(q)^{2}=1$ for every q. Thus, the rank 1 bundle $E^{\otimes 2}$ is trivial. The bundle $E^{\otimes n}$ is trivial for n even and isomorphic to E for n odd.
1.4. External (wedge) power. Let E be a rank n vector bundle, and $1 \leq k \leq n$, an integer. Let $\left\{U_{\alpha}\right\}$ be a trivialization, and $\psi_{\alpha \beta} \in \operatorname{GL}(n, \mathbb{R})$, transition maps. Define $\widetilde{\psi}_{\alpha \beta}(a)=\left(\varphi_{\alpha \beta}(a)\right)^{\wedge k}$ (if A is a $(n \times n)$-matrix then $A^{\wedge k}$ is a $\left(\binom{n}{k} \times\binom{ n}{k}\right)$-matrix with rows and columns indexed by increasing sequences $1 \leq i_{1}<\cdots<i_{k} \leq n$; the matrix element corresponding to $\left(i_{1}, \ldots, i_{k}\right)$ and $\left(j_{1}, \ldots, j_{k}\right)$ is equal to the determinant of the submatrix of A formed by the rows i_{1}, \ldots, i_{k} and the columns j_{1}, \ldots, j_{k}. If A is a matrix of a linear operator $V \rightarrow V$ then $A^{\wedge k}$ is a matrix of the linear operator $\Lambda^{k} V \rightarrow \Lambda^{k} V$ mapping every decomposable element $v_{1} \wedge \cdots \wedge v_{k}$ to $A v_{1} \wedge \cdots \wedge A v_{k}$.)

Proposition 4. The maps $\widetilde{\psi}_{\alpha \beta}$ satisfy the cocycle condition and are therefore transition maps of a vector bundle of rank $\binom{n}{k}$ denoted by $\Lambda^{k} E$. The fiber $\left(\Lambda^{k} E\right)_{a}$ is the k-th external power $\Lambda^{k} E_{a}$.

The proof is an exercise (hint: $\left.(A B)^{\wedge k}=A^{\wedge k} B^{\wedge k}\right)$.
2. k-forms and a differential. Let M be a n-dimensional manifold, and $1 \leq k \leq n$, an integer. A section of the bundle $\Lambda^{k} T^{*} M$ is called a differential k-form. Let $a \in U$ where (U, V, x) is a coordinate system. A basis of the space $\Lambda^{k} T_{a}^{*} M$ is formed by the wedge products $d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}$ where $1 \leq i_{1}<\cdots<i_{k} \leq n$, and $d x_{1}, \ldots, d x_{n}$ is the standard basis in $T_{a}^{*} M$. Thus in coordinates a k-form looks like $\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} \omega_{i_{1}, \ldots, i_{k}}(a) d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}$. The set of k-forms on M is sometimes denoted by $\Omega^{k}(M)$; it is an infinite-dimensional vector space and naturally a module over the algebra $C^{\infty}(M)$.

It follows from Proposition 4 and Proposition 1 that the fiber $\Lambda^{k} T_{a}^{*} M$ of the bundle is the space of k-linear skew-symmetric forms on the tangent space $T_{a} M$. If $f: M_{1} \rightarrow M_{2}$ is a smooth map, then one can define a pullback $f^{*} \omega$ of a k-form ω on M_{2} as a k-form on M_{1} such that the value of $f^{*} \omega(a)$ on vectors $v_{1}, \ldots, v_{k} \in T_{a} M_{1}$ is equal to $\omega(a)\left(f^{\prime}(a) v_{1}, \ldots, f^{\prime}(a) v_{k}\right)$. The pullback is a linear operation.

Example 2. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a smooth map. Then for the 1 -form $f^{*} d x_{i}$ and any $j=1, \ldots, n$ one has

$$
\left\langle f^{*} d x_{i}, \frac{\partial}{\partial x_{j}}\right\rangle=\left\langle d x_{i}, f^{\prime} \frac{\partial}{\partial x_{j}}\right\rangle=\left\langle d x_{i}, \sum_{p=1}^{n} \frac{\partial f_{p}}{\partial x_{j}} \frac{\partial}{\partial x_{p}}\right\rangle=\frac{\partial f_{i}}{\partial x_{j}}
$$

Hence, $f^{*} d x_{i}=\sum_{j=1}^{n} \frac{\partial f_{i}}{\partial x_{j}} d x_{j}$.

If V is a n-dimensional vector space then the direct $\operatorname{sum} \Lambda V=\bigoplus_{k=0}^{n} V^{\wedge k}$ is an algebra (called the exterior algebra of V) with respect to the exterior multiplication of forms. Namely, elements of $V^{\wedge k}$ are k-linear skewsymmetric forms on V^{*}, and the wedge product of the k_{1}-form u and the k_{2}-form v is defined as a $\left(k_{1}+k_{2}\right)$-form $u \wedge v$ such that

$$
(u \wedge v)\left(\xi_{1}, \ldots, \xi_{k_{1}+k_{2}}\right) \sum_{\substack{\left\{1, \ldots, k_{1}+k_{2}\right\}=I \sqcup J \\ I=\left\{i_{1}<\cdots<i_{k_{1}}\right\}, J=\left\{j_{1}<\cdots<j_{k_{2}}\right\}}}(-1)^{i_{1}+\cdots+i_{k_{1}}-k_{1}\left(k_{1}+1\right) / 2} u\left(\xi_{i_{1}}, \ldots, \xi_{i_{k_{1}}}\right) v\left(\xi_{j_{1}}, \ldots, \xi_{j_{k_{2}}}\right) .
$$

Proposition 5. The exterior algebra is associative and super-commutative: $(u \wedge v) \wedge w=u \wedge(v \wedge w)$ and $v \wedge u=$ $(-1)^{k_{1} k_{2}} u \wedge v$ for all $u \in \Lambda^{k_{1}} V, v \in \Lambda^{k_{2}} V, w \in \Lambda^{k_{3}} V$.

The proof is a standard exercise in linear algebra. The 0 -th exterior power of V is by definition a one-dimensional space equal to \mathbb{R}.

So, the direct sum $\bigoplus_{k=0}^{n} \Omega^{k}(M)$ is an graded associative super-commutative algebra, with the 0 -th component being equal to $C^{\infty}(M)$. A graded algebra is naturally a module over its 0 -th component (because if $A=\bigoplus_{k=0}^{m} A_{k}$ then the product of an element $x \in A^{0}$ and an element $y \in A^{k}$ is $\left.x y \in A^{k}\right)$, so $\Omega^{k}(M)$ is a $C^{\infty}(M)$-module.

Example 3. Let $S^{n} \subset \mathbb{R}^{n+1}$ be a unit sphere. Define a skew-symmetric n-form $\omega(a)$ on $T_{a} S^{n}$ as follows: $\omega(a)\left(v_{1}, \ldots, v_{n}\right)=\operatorname{det}\left(a, v_{1}, \ldots, v_{n}\right)$ where $a=\left(a_{1}, \ldots, a_{n+1}\right) \in S^{n}$ and $v_{i}=\left(v_{i 1}, \ldots, v_{i, n+1}\right) \in \mathbb{R}^{n+1}, i=1, \ldots, n$, are vectors tangent to S^{n} (that is, normal to a) at a. Thus one defines a n-form on S^{n} called the volume form. The value $\omega(a)$ of the volume form is nondegenerate for any a.

Proposition 6. The exterior product is a natural operation, that is, it commutes with pullbacks: $f^{*}\left(\omega_{1} \wedge \omega_{2}\right)=$ $f^{*} \omega_{1} \wedge f^{*} \omega_{2}$.

Proof is an exercise.
Definition 1. Let $f \in C^{\infty}(M)$ be a smooth function on M. By $d f$ one denotes a 1 -form such that the value $\langle d f(a), v\rangle$ of the linear functional $d f(a): T_{a} M \rightarrow \mathbb{R}$ on a vector $v \in T_{a} M$ is equal to $v(f)$.
(Recall that a vector $v \in T_{a} M$ is a linear functional on $C^{\infty}(M)$.)
Example 4. Let $M=\mathbb{R}^{n}$ and $a \in M$; then f becomes a smooth function of n real variables. For a vector $v=\frac{\partial}{\partial x_{i}}$ one has $v(f)=\frac{\partial f}{\partial x_{i}}(a)=\langle d f(a), v\rangle$, which gives for $d f(a)$ the expression $d f(a)=\frac{\partial f}{\partial x_{1}}(a) d x_{1}+\cdots+\frac{\partial f}{\partial x_{n}}(a) d x_{n}$.

Theorem 2. There exists a unique linear operator $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ with the following properties:
(1) For $k=0$ it is given by Definition 1.
(2) It is a super-derivation: if $u \in \Omega^{k_{1}}(M)$ and $v \in \Omega^{k_{2}}(M)$ then $d(u \wedge v)=d u \wedge v+(-1)^{k_{1}} u \wedge d v$.

This operator commutes with pullbacks $d f^{*} \omega=f^{*} d \omega$ and satisfies the equality $d^{2}=0$.
The operator d is called exterior differentiation; the form $d \omega$ is called the exterior derivative of the form ω.
Proof. Prove the theorem first for the manifold $M=\mathbb{R}^{n}$. The covectors $d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}$ for all $1 \leq i_{1}<$ $\cdots<i_{k} \leq n$ form a basis in $\Lambda^{k} T_{a} \mathbb{R}^{n}=\Lambda^{k} \mathbb{R}^{n}$ for all $a \in \mathbb{R}^{n}$, and therefore any k-form is given by the formula $\omega=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} \nu_{i_{1}, \ldots, i_{k}}(x) d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}$. Take by definition

$$
d \omega \stackrel{\text { def }}{=} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} d \nu_{i_{1}, \ldots, i_{k}}(x) \wedge d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}=\sum_{i=1}^{n} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} \frac{\partial \nu(x)}{\partial x_{i}} d x_{i} \wedge d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}
$$

For 0 -forms the operator d coincides with that of Definition 1, cf. Example 4. Equality $d(u \wedge v)=d u \wedge v+$ $(-1)^{k_{1}} u \wedge d v$ for any u and v is checked by a straightforward computation.

Prove that $d^{2}=0$. Let first $k=0$; then $d d \nu(x)=d\left(\sum_{i=1}^{n} \frac{\partial u}{\partial x_{i}} d x_{i}\right)=\sum_{i, j=1}^{n} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} d x_{j} \wedge d x_{i}$. Since $\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}=$ $\frac{\partial^{2} u}{\partial x_{j} \partial x_{i}}$ and $d x_{j} \wedge d x_{i}=-d x_{i} \wedge d x_{j}$, the terms in the last sum cancel pairwise, and $d^{2} \nu(x)=0$. Then take $k=1$, so $\omega=\sum_{i=1}^{n} \nu_{i}(x) d x_{i}$. Then $d \omega=\sum_{i, j=1}^{n} \frac{\partial \nu_{i}}{\partial x_{j}} d x_{j} \wedge d x_{i}$ and $d d \omega=\sum_{i, j, k=1}^{n} \frac{\partial^{2} \nu_{i}}{\partial x_{j} \partial x_{k}} d x_{k} \wedge d x_{j} \wedge d x_{i}=0$ by the same reason. Now by the super-derivation property for any k one has $d d \omega=d\left(\sum_{i_{1}<\cdots<i_{k}} d \nu_{i_{1}, \ldots, i_{k}} \wedge d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}\right)=$ $\sum_{i_{1}<\cdots<i_{k}} d^{2} \nu_{i_{1}, \ldots, i_{k}} \wedge d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}-d \nu_{i_{1}, \ldots, i_{k}} \wedge d^{2} x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}+\cdots=0$.

Prove that the operation d is natural, that is, commutes with pullbacks. Consider a smooth map $f: M_{1}=$ $\mathbb{R}^{n} \rightarrow M_{2}=\mathbb{R}^{m}$ given by the formula $f(x)=\left(f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)\right)$. Again, let first $k=0$, so that $\omega=\nu(y)$ (a function of the argument $y \in \mathbb{R}^{m}$), and $d \omega=\sum_{i=1}^{m} \frac{\partial \nu}{\partial y_{i}} d y_{i}$. One has $f^{*} \omega=\nu(f(x)$), and $d f^{*} \omega=\sum_{i=1}^{n} \frac{\partial \nu(f(x))}{\partial x_{i}} d x_{i}=\sum_{i=1}^{n} \sum_{j=1}^{m} \frac{\partial \nu}{\partial y_{j}}(f(x)) \frac{\partial f_{j}}{\partial x_{i}}(x) d x_{i}$. By Example 2 and Proposition 6 one has $f^{*} d \omega=$ $\sum_{i=1}^{n} f^{*} \frac{\partial \nu}{\partial x_{i}} \wedge f^{*} d x_{i}=\sum_{i=1}^{n} \frac{\partial \nu}{\partial x_{i}}(f(y)) \sum_{j=1}^{n} \frac{\partial f_{i}}{\partial x_{j}}(x) d x_{j}=d f^{*} \omega$.

For $k=1$ the reasoning is similar: $\omega=\sum_{i=1}^{m} \nu_{i}(y) d y_{i}$ and $d \omega=\sum_{i, j=1}^{m} \frac{\partial \nu_{i}}{\partial y_{j}} d y_{j} \wedge d y_{i}$. Then by Proposition 6 $f^{*} \omega=\sum_{i=1}^{m} \sum_{p=1}^{n} \nu_{i}(f(y)) \frac{\partial f_{i}}{\partial x_{p}} d x_{p}$; so

$$
\begin{aligned}
d f^{*} \omega & =\sum_{i, j=1}^{m} \sum_{p, q=1}^{n} \frac{\partial \nu_{i}}{\partial y_{j}}(f(x)) \frac{\partial f_{j}}{\partial x_{q}}(x) \frac{\partial f_{i}}{\partial x_{p}}(x) d x_{q} \wedge d x_{p}+\sum_{i=1}^{m} \sum_{p, q=1}^{n} \nu_{i}(f(y)) \frac{\partial^{2} f_{i}}{\partial x_{p} \partial x_{q}}(x) d x_{q} \wedge d x_{p} \\
& =\sum_{i, j=1}^{m} \sum_{p, q=1}^{n} \frac{\partial \nu_{i}}{\partial y_{j}}(f(x)) \frac{\partial f_{j}}{\partial x_{q}}(x) \frac{\partial f_{i}}{\partial x_{p}}(x) d x_{q} \wedge d x_{p}+\sum_{i=1}^{m} \sum_{1 \leq p<q \leq n} \frac{\partial^{2} f_{i}}{\partial x_{p} \partial x_{q}}(x)\left(d x_{q} \wedge d x_{p}+d x_{p} \wedge d x_{q}\right) \\
& =\sum_{i, j=1}^{m} \sum_{p, q=1}^{n} \frac{\partial \nu_{i}}{\partial y_{j}}(f(x)) \frac{\partial f_{j}}{\partial x_{q}}(x) \frac{\partial f_{i}}{\partial x_{p}}(x) d x_{q} \wedge d x_{p}
\end{aligned}
$$

At the same time by Proposition 6 and Example 4

$$
f^{*} d \omega=\sum_{i, j=1}^{m} f^{*} \frac{\partial \nu_{i}}{\partial y_{j}} \wedge f^{*} d y_{j} \wedge f^{*} d y_{i}=\sum_{i, j=1}^{m} \sum_{p, q=1}^{n} \frac{\partial \nu_{i}}{\partial y_{j}}(f(x)) \frac{\partial f_{j}}{\partial x_{q}}(x) \frac{\partial f_{i}}{\partial x_{p}}(x) d x_{q} \wedge d x_{p}=d f^{*} \omega
$$

For an arbitrary k it suffices (because f^{*} is a linear map) to check naturality of d for the form $\omega=\nu(x) d x_{i_{1}} \wedge$ $\cdots \wedge d x_{i_{k}}$. Then $d \omega=d \nu \wedge d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}$, so by Proposition 6 one has $f^{*} d \omega=f^{*} d \nu \wedge f^{*} d x_{i_{1}} \wedge \cdots \wedge f^{*} d x_{i_{k}}$ and also $f^{*} \omega=\left(f^{*} \nu\right) f^{*} d x_{i_{1}} \wedge \cdots \wedge f^{*} d x_{i_{k}}$. The operator d has been proved to be natural for 0 -forms (functions) and 1-forms, to satisfy $d^{2}=0$ and to be a super-derivation, so one has

$$
\begin{aligned}
d f^{*} \omega & =d\left(f^{*} \nu\right) \wedge f^{*} d x_{i_{1}} \wedge \cdots \wedge f^{*} d x_{i_{k}}+\sum_{s=1}^{k}(-1)^{s+1}\left(f^{*} \nu\right) \wedge f^{*} d x_{i_{1}} \wedge \cdots \wedge d f^{*} d x_{i_{s}} \wedge \cdots \wedge f^{*} d x_{i_{k}} \\
& =f^{*} d \nu \wedge f^{*} d x_{i_{1}} \wedge \cdots \wedge f^{*} d x_{i_{k}}+\sum_{s=1}^{k}(-1)^{s+1}\left(f^{*} \nu\right) \wedge f^{*} d x_{i_{1}} \wedge \cdots \wedge f^{*} d^{2} x_{i_{s}} \wedge \cdots \wedge f^{*} d x_{i_{k}} \\
& =f^{*} d \nu \wedge f^{*} d x_{i_{1}} \wedge \cdots \wedge f^{*} d x_{i_{k}}=f^{*} d \omega
\end{aligned}
$$

Now prove the theorem for an arbitrary manifold M. Let $a \in U \subset M$ where (U, V, x) is the system of coordinates. For a k-form ω on M let $\left.\omega_{x} \stackrel{\text { def }}{=}\left(x^{-1}\right)^{*} \omega\right|_{U}$; it is a k-form on $V \subset \mathbb{R}^{n}$. Take by definition $d \omega \stackrel{\text { def }}{=} x^{*}\left(d \omega_{x}\right)$; here ω_{x} is a k-form on an open subset of \mathbb{R}^{n}, so $d \omega_{x}$ was defined earlier.

Check now that $d \omega$ does not depend on the choice of coordinates. Indeed, let $(\tilde{U}, \tilde{V}, y)$ be another system of coordinates and $a \in U \cap \tilde{U}$, with $\varphi=y \circ x^{-1}: W \rightarrow \tilde{W}$ being a transition map $(W \subset V$ and $\tilde{W} \subset \tilde{V}$ are open subsets). Then $\omega_{x}=\varphi^{*} \omega_{y}$, so $d \omega_{x}=\varphi^{*} d \omega_{y}: \varphi$ is a map between open subsets of \mathbb{R}^{n}, so the naturality of d with respect to such maps is already proved. Therefore the $d \omega$ defined by means of y is $\left(y^{-1}\right)^{*} \varphi^{*} d \omega_{x}=$ $\left(y^{-1}\right)^{*} y^{*}\left(x^{-1}\right)^{*} d \omega_{x}=\left(x^{-1}\right)^{*} d \omega_{x}=d \omega$.

So, the exterior differentiation operator d is well-defined on any manifold. Properties of the operator d on arbitrary manifolds follow immediately from the definition and the corresponding properties of d on \mathbb{R}^{n}; details of proofs are left to the reader.
3. Orientation of a manifold. An atlas $\left\{\left(U_{\alpha}, V_{\alpha}, x_{\alpha}\right)\right\}$ on a manifold M is called oriented if for any α, β and for any $u \in x_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right)$ one has $\operatorname{det} \varphi_{\alpha \beta}^{\prime}(u)>0$. (Recall that the transition map $\varphi_{\alpha \beta}$ is smooth and has an inverse $\operatorname{map} \varphi_{\beta \alpha}$, so that $\varphi_{\alpha \beta}^{\prime}(u): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is invertible, too. Hence $\varphi_{\alpha \beta}^{\prime}(u) \neq 0$ for any atlas; orientation chooses the sign here.) Two oriented atlases are called equivalent if their union is an oriented atlas, too. The equivalence class of oriented atlases on M is called an orientation of M. A manifold having an oriented atlas is called orientable; a manifold with the orientation chosen is called oriented.

Remark. A connected orientable manifold has exactly two orientations. The proof is a not-so-easy exercise.
Example 5. A circle S^{1} has an atlas of two coordinate systems, $\left(U_{a},(-\pi, \pi), x\right)$ and $\left(U_{b},(0,2 \pi), x\right)$ where a, b are two opposite points, $U_{a} \stackrel{\text { def }}{=} S^{1} \backslash\{a\}$ and $U_{b} \stackrel{\text { def }}{=} S^{1} \backslash\{b\}$, and the coordinates x and y are polar angles counted from the point b. The intersection $U_{a} \cap U_{b}$ consists of two arcs, $a b$ and $b a$, and the (only one) transition map is $\varphi_{a b}(u)=u$ on the arc $b a$ and $\varphi_{a b}=u+2 \pi$ on the arc $a b$. Thus one has det $\varphi_{a b}^{\prime}(u)=1$ everywhere and the atlas is oriented. If $\left(U_{c},(-\pi, \pi), z\right)$ is the third chart with $z=-x$ and $U_{c}=U_{a}$, then $\varphi_{a c}(u)=-u$, and det $\varphi_{a c}^{\prime}(u)=-1$. So the three-chart atlas is not oriented, unlike the two-chart one.
Example 6. The Moebius band M is the square $[0,1] \times(0,1)$ with the identifications $(0, t) \sim(1,1-t)$ for all $t \in(0,1)$. It has an atlas of two charts: $U_{1}=V_{1}=(0,1) \times(0,1) \subset M$ and the coordinate map is the identity map $\left(x_{1}(a, b)=a, x_{2}(a, b)=b\right)$, and the other is $U_{2}=\{(a, b) \in M \mid a \neq 1 / 2\}$, and the map is $y_{1}(a, b)=a, y_{2}(a, b)=b$ for $a>1 / 2$ and $y_{1}(a, b)=a+1, y_{2}(a, b)=1-b$ for $a<1 / 2$. Thus one has $\operatorname{det} \varphi_{12}^{\prime}(a, b)=1$ for $a>1 / 2$ and $\operatorname{det} \varphi_{12}^{\prime}(a, b)=-1$ for $a<1 / 2$. So the atlas is not oriented. In fact, the Moebius band with the standard smooth structure does not have an oriented atlas (is not orientable); we do not give the proof of this fact here.

