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LECTURE 6

Abstract. Operations on vector bundles. Di�erential forms. Orientation.

1. Operations on vector bundles.

1.1. Dual bundle. Let E be a rank n vector bundle on the base B, B = ⋃
� U�, a trivialization, and  �� :

U� ∩ U� → GL(n;R), transition maps. Consider maps  ̃�� def=  T�� =
(
( ��)−1)T on the same trivialization (T

means a transposed matrix).

Proposition 1. Maps  ̃�� satisfy the cocycle condition.

Proof.  ̃�� =  T�� = IT = I (the identity matrix).  ̃�� ̃� =  T�� T� = ( � ��)T =  T� =  ̃� . ¤

So,  ̃�� are transition maps of a rank n vector bundle. This bundle is called a dual bundle to E and is denoted
E∗.

For any vector bundle E and a point a ∈ B of the base we will be denoting Ea def= p−1(a) the �ber over the point
a. Let v ∈ Ea and � ∈ E∗a . Fix an index � such that a ∈ U�; then v is represented in the corresponding trivializing
chart as (a; x; �) and �, as (a; �; �). De�ne the bilinear form 〈·; ·〉 : E∗a×Ea → R by 〈�; v〉 def= (�; x) where the braces
mean the standard scalar product in Rn (recall that x; � ∈ Rn by the de�nition of the trivialization). If x ∈ U� then
the vectors v and � are represented in the corresponding trivialization as (a; x′; �), (a; �′; �) where x′ =  ��(a)x
and �′ =  ̃��(a)�. Then the value 〈�; v〉 becomes (�′; x′) = ( ̃��(a)�;  ��(a)x) = ( ��(a)T ��(a)T �; x) = (�; x),
that is, does not change. So, the value 〈�; v〉 is well-de�ned and does not depend on the choice of a trivializing
chart. Since the standard scalar product in Rn is a nondegenerate biliniar form, the form 〈·; ·〉 : E∗a ×Ea → R also
is. So, one can understand E∗a , for every a ∈ B, as a dual space to the vector space Ea, as the notation suggests.

For a manifold M the bundle dual to the tangent bundle TM is called a contangent bundle and is denoted T ∗M .
Theorem 1. Any real vector bundle on a manifold is equivalent to its dual.
Proof. Since E∗a is dual to Ea for every a, a linear isomorphism Ra : Ea → E∗a is the same as a nondegenerate
bilinear form Ba on Ea: Ba(u; v) def= 〈Ra(u); v〉, and vice versa, if Ba is known then Ra(u) : Ea → R is de�ned as
Ra(u)v def= Ba(u; v). If a bilinear form Ba is symmetric then it is the same as a quadratic form Qa on Ea: Qa(u) =
Ba(u; u), and vice versa, if Qa is known then a symmetric Ba is de�ned by Ba(u; v) = 1

2 (Qa(u+v)−Qa(u)−Qa(v)).
So, to prove the theorem it is enough to de�ne a nondegenerate quadratic form Qa on every Ea, which depend on
a continuously (or smoothly, if smooth bundles are considered).

If a ∈ U� (a trivializing chart for E and E∗) and v ∈ Ea is represented by a triple (a; x; �) in the corresponding
trivialization, then take Q(�)

a (v) def= (x; x) where braces mean the standard scalar product in Rn. Let then %� be a
partition of uniry subordinate to the cover M = ⋃

� U�. De�ne Qa(v) def= ∑
� %�(a)Q(�)

a (v). Since the form Q(�)
a is

positive de�nite, %�(a) ≥ 0 and ∑
� %�(a) = 1, the form Qa is positive de�nite and therefore nondegenerate. ¤

By Theorem 1 the contangent bundle T ∗M of a manifold M is equivalent to its tangent bundle. Nevertheless the
properties of the operation (a functor) T ∗ relating to a manifold its cotangent bundle are quite di�erent from those
of the operation (a functor) T relating to a manifold its tangent bundle. In particular, if f : M1 →M2 is a smooth
map then there is no analog of the bundle morphism f ′ : TM1 → TM2 for cotangent bundles. At the same time,
let � be a section of the cotangent bundle to the manifold M2 (such section is called a di�erential 1-form on M2;
the term will be explained below in Section 2). Then de�ne a section f∗� of the bundle T ∗M1 as follows: the value
of f∗�(a) where a ∈ M1 is the linear functional on TaM1 taking on a vector u ∈ TaM1 the value 〈�(a); f ′(a)u〉.
The section f∗� is called a pullback of the 1-form � to the manifold M1; if M1 is a submanifold of M2 and f , a
tautological embedding (for a ∈ M1 one has f(a) = a ∈ M2), then f∗� is called a restriction of the form � to
the submanifold. Note that for vector �elds (sections of the tangent bundle) the pullback (and even a restriction)
cannot be de�ned: nor a pushforward. For example, a vector Z(a) in the point a ∈M1 of a submanifold M1 ⊂M2
need not be tangent to M1.

Let M be a manifold, a ∈M a point covered by a chart U with the coordinate system x = (x1; : : : ; xn). A basis
in T ∗aM dual to the basis @

@x1
(a); : : : ; @

@xn (a) is denoted dx1(a); : : : ; dxn(a) (dual basis means that 〈dxi(a); @
@xj (a)〉

is equal to 1 if i = j and to 0 otherwise).
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1.2. Direct sum. Let E1; E2 be vector bundles of ranks n1; n2 on the same base B. Without loss of generality one
can suppose that they have the same set of trivializing charts U� (prove!); denote by  (1)

�� and  (2)
�� the corresponding

transition maps. For a point a ∈ B de�ne a map  ��(a) ∈ GL(n1 + n2;R) as  ��(a) def=  (1)
�� (a)⊕  (2)

�� (a) (a block
diagonal matrix (n1 +n2)× (n1 +n2) with the n1×n1-block  (1)

�� (a) in the upper left corner and the n2×n2-block
 (2)
�� (a) in the lower right; the remaining matrix elements are 0).

Proposition 2. The maps  �� satisfy the cocycle condition and are therefore transition maps of a vector bundle
of rank n1 + n2 denoted by E1 ⊕ E2. The bundle E = E1 ⊕ E2 contains two subbundles isomorphic to E1 and
E2 and such that Ea

def= (E1)a ⊕ (E2)a for every a (�bers of the subbundles on the right-hand side). (In other
words, there are bundle morphisms �1 : E1 → E and �2 : E2 → E which are embeddings on every �ber, and
Ea = �1((E1)a)⊕ �2((E2)a).)

The proof of Proposition 2 is an exercise and is similar to the proof of Proposition 1 and the reasoning after it.

1.3. Tensor product. Let E1; E2 be vector bundles of ranks n1; n2 on the same base B; suppose again that they
have the same trivialization U� and the transition maps  (1)

�� and  (2)
�� . Then de�ne  ��(a) =  (1)

�� (a)⊗  (2)
�� (a) ∈

GL(n1n2;R) (a matrix n1n2×n1n2; its elements are indexed by the pairs of pairs of indices ((i; j); (k; `)) as follows:
 ��(a)(i;j);(k;`) =  (1)

�� (a)ik (2)
�� (a)jl; here i; k = 1; : : : ; n1 and j; ` = 1; : : : ; n2.

Proposition 3. The maps  �� satisfy the cocycle condition and are therefore transition maps of a vector bundle of
rank n1n2 denoted by E1 ⊗E2. The �ber (E1 ⊗E2)a is isomorphic to (E1)a ⊗ (E2)a for every a; this isomorphism
can be made smooth on a.

Again, the proof is an exercise.

Example 1. Let M = RP 1 = S1 and E be a tautological (Moebius) bundle of rank 1 on M (see Problem 1 of
Set 3). Its trivialization consists of two charts, Ua = S1 \ {a} and Ub = S1 \ {b} where a and b are opposite (or
any two distinct) points in S1. The intersection Ua ∩ Ub consists of two arcs, A1 and A2, and the transition map
 (q) ∈ GL(1;R) = R \ {0} is  (q) = 1 for q ∈ A1 and  (q) = −1 for q ∈ A2. Then the transition map for the
tensor square E⊗2 = E ⊗ E is  (q)2 = 1 for every q. Thus, the rank 1 bundle E⊗2 is trivial. The bundle E⊗n is
trivial for n even and isomorphic to E for n odd.

1.4. External (wedge) power. Let E be a rank n vector bundle, and 1 ≤ k ≤ n, an integer. Let {U�} be a
trivialization, and  �� ∈ GL(n;R), transition maps. De�ne  ̃��(a) = ('��(a))∧k (if A is a (n × n)-matrix then
A∧k is a (

(n
k
) × (n

k
)
)-matrix with rows and columns indexed by increasing sequences 1 ≤ i1 < · · · < ik ≤ n; the

matrix element corresponding to (i1; : : : ; ik) and (j1; : : : ; jk) is equal to the determinant of the submatrix of A
formed by the rows i1; : : : ; ik and the columns j1; : : : ; jk. If A is a matrix of a linear operator V → V then A∧k is
a matrix of the linear operator �kV → �kV mapping every decomposable element v1 ∧ · · · ∧ vk to Av1 ∧ · · · ∧Avk.)

Proposition 4. The maps  ̃�� satisfy the cocycle condition and are therefore transition maps of a vector bundle
of rank

(n
k
)

denoted by �kE. The �ber (�kE)a is the k-th external power �kEa.

The proof is an exercise (hint: (AB)∧k = A∧kB∧k).

2. k-forms and a di�erential. Let M be a n-dimensional manifold, and 1 ≤ k ≤ n, an integer. A section of the
bundle �kT ∗M is called a di�erential k-form. Let a ∈ U where (U; V; x) is a coordinate system. A basis of the
space �kT ∗aM is formed by the wedge products dxi1 ∧ · · · ∧ dxik where 1 ≤ i1 < · · · < ik ≤ n, and dx1; : : : ; dxn
is the standard basis in T ∗aM . Thus in coordinates a k-form looks like ∑

1≤i1<···<ik≤n !i1;:::;ik(a) dxi1 ∧ · · · ∧ dxik .
The set of k-forms on M is sometimes denoted by 
k(M); it is an in�nite-dimensional vector space and naturally
a module over the algebra C∞(M).

It follows from Proposition 4 and Proposition 1 that the �ber �kT ∗aM of the bundle is the space of k-linear
skew-symmetric forms on the tangent space TaM . If f : M1 →M2 is a smooth map, then one can de�ne a pullback
f∗! of a k-form ! on M2 as a k-form on M1 such that the value of f∗!(a) on vectors v1; : : : ; vk ∈ TaM1 is equal
to !(a)(f ′(a)v1; : : : ; f ′(a)vk). The pullback is a linear operation.

Example 2. Let f : Rn → Rn be a smooth map. Then for the 1-form f∗dxi and any j = 1; : : : ; n one has

〈f∗dxi; @
@xj

〉 = 〈dxi; f ′ @@xj 〉 = 〈dxi;
n∑
p=1

@fp
@xj

@
@xp

〉 = @fi
@xj

:

Hence, f∗dxi = ∑n
j=1

@fi
@xj dxj .



If V is a n-dimensional vector space then the direct sum �V = ⊕n
k=0 V ∧k is an algebra (called the exterior

algebra of V ) with respect to the exterior multiplication of forms. Namely, elements of V ∧k are k-linear skew-
symmetric forms on V ∗, and the wedge product of the k1-form u and the k2-form v is de�ned as a (k1 + k2)-form
u ∧ v such that

(u ∧ v)(�1; : : : ; �k1+k2)
∑

{1;:::;k1+k2}=ItJ
I={i1<···<ik1};J={j1<···<jk2}

(−1)i1+···+ik1−k1(k1+1)=2u(�i1 ; : : : ; �ik1
)v(�j1 ; : : : ; �jk2

):

Proposition 5. The exterior algebra is associative and super-commutative: (u∧ v)∧w = u∧ (v ∧w) and v ∧ u =
(−1)k1k2u ∧ v for all u ∈ �k1V , v ∈ �k2V , w ∈ �k3V .

The proof is a standard exercise in linear algebra. The 0-th exterior power of V is by de�nition a one-dimensional
space equal to R.

So, the direct sum ⊕n
k=0 
k(M) is an graded associative super-commutative algebra, with the 0-th component

being equal to C∞(M). A graded algebra is naturally a module over its 0-th component (because if A = ⊕m
k=0Ak

then the product of an element x ∈ A0 and an element y ∈ Ak is xy ∈ Ak), so 
k(M) is a C∞(M)-module.

Example 3. Let Sn ⊂ Rn+1 be a unit sphere. De�ne a skew-symmetric n-form !(a) on TaSn as follows:
!(a)(v1; : : : ; vn) = det(a; v1; : : : ; vn) where a = (a1; : : : ; an+1) ∈ Sn and vi = (vi1; : : : ; vi;n+1) ∈ Rn+1, i = 1; : : : ; n,
are vectors tangent to Sn (that is, normal to a) at a. Thus one de�nes a n-form on Sn called the volume form.
The value !(a) of the volume form is nondegenerate for any a.

Proposition 6. The exterior product is a natural operation, that is, it commutes with pullbacks: f∗(!1 ∧ !2) =
f∗!1 ∧ f∗!2.

Proof is an exercise.

De�nition 1. Let f ∈ C∞(M) be a smooth function on M . By df one denotes a 1-form such that the value
〈df(a); v〉 of the linear functional df(a) : TaM → R on a vector v ∈ TaM is equal to v(f).

(Recall that a vector v ∈ TaM is a linear functional on C∞(M).)

Example 4. Let M = Rn and a ∈M ; then f becomes a smooth function of n real variables. For a vector v = @
@xi

one has v(f) = @f
@xi (a) = 〈df(a); v〉, which gives for df(a) the expression df(a) = @f

@x1
(a) dx1 + · · ·+ @f

@xn (a) dxn.

Theorem 2. There exists a unique linear operator d : 
k(M) → 
k+1(M) with the following properties:
(1) For k = 0 it is given by De�nition 1.
(2) It is a super-derivation: if u ∈ 
k1(M) and v ∈ 
k2(M) then d(u ∧ v) = du ∧ v + (−1)k1u ∧ dv.

This operator commutes with pullbacks df∗! = f∗d! and satis�es the equality d2 = 0.

The operator d is called exterior di�erentiation; the form d! is called the exterior derivative of the form !.

Proof. Prove the theorem �rst for the manifold M = Rn. The covectors dxi1 ∧ · · · ∧ dxik for all 1 ≤ i1 <
· · · < ik ≤ n form a basis in �kTaRn = �kRn for all a ∈ Rn, and therefore any k-form is given by the formula
! = ∑

1≤i1<···<ik≤n �i1;:::;ik(x) dxi1 ∧ · · · ∧ dxik . Take by de�nition

d! def=
∑

1≤i1<···<ik≤n
d�i1;:::;ik(x) ∧ dxi1 ∧ · · · ∧ dxik =

n∑

i=1

∑

1≤i1<···<ik≤n

@�(x)
@xi

dxi ∧ dxi1 ∧ · · · ∧ dxik :

For 0-forms the operator d coincides with that of De�nition 1, cf. Example 4. Equality d(u ∧ v) = du ∧ v +
(−1)k1u ∧ dv for any u and v is checked by a straightforward computation.

Prove that d2 = 0. Let �rst k = 0; then dd�(x) = d(∑n
i=1

@u
@xi dxi) = ∑n

i;j=1
@2u

@xi@xj dxj ∧ dxi. Since @2u
@xi@xj =

@2u
@xj@xi and dxj ∧ dxi = −dxi ∧ dxj , the terms in the last sum cancel pairwise, and d2�(x) = 0. Then take k = 1, so
! = ∑n

i=1 �i(x) dxi. Then d! = ∑n
i;j=1

@�i
@xj dxj ∧ dxi and dd! = ∑n

i;j;k=1
@2�i

@xj@xk dxk ∧ dxj ∧ dxi = 0 by the same
reason. Now by the super-derivation property for any k one has dd! = d(∑i1<···<ik d�i1;:::;ik ∧ dxi1 ∧ · · · ∧ dxik) =∑
i1<···<ik d

2�i1;:::;ik ∧ dxi1 ∧ · · · ∧ dxik − d�i1;:::;ik ∧ d2xi1 ∧ · · · ∧ dxik + · · · = 0.
Prove that the operation d is natural, that is, commutes with pullbacks. Consider a smooth map f : M1 =

Rn → M2 = Rm given by the formula f(x) = (f1(x1; : : : ; xn); : : : ; fm(x1; : : : ; xn)). Again, let �rst k = 0, so
that ! = �(y) (a function of the argument y ∈ Rm), and d! = ∑m

i=1
@�
@yi dyi. One has f∗! = �(f(x)), and

df∗! = ∑n
i=1

@�(f(x))
@xi dxi = ∑n

i=1
∑m
j=1

@�
@yj (f(x))@fj@xi (x) dxi. By Example 2 and Proposition 6 one has f∗d! =∑n

i=1 f∗ @�@xi ∧ f∗dxi = ∑n
i=1

@�
@xi (f(y)) ∑n

j=1
@fi
@xj (x) dxj = df∗!.



For k = 1 the reasoning is similar: ! = ∑m
i=1 �i(y) dyi and d! = ∑m

i;j=1
@�i
@yj dyj ∧ dyi. Then by Proposition 6

f∗! = ∑m
i=1

∑n
p=1 �i(f(y)) @fi@xp dxp; so

df∗! =
m∑

i;j=1

n∑
p;q=1

@�i
@yj

(f(x)) @fj@xq
(x) @fi@xp

(x) dxq ∧ dxp +
m∑

i=1

n∑
p;q=1

�i(f(y)) @2fi
@xp@xq

(x) dxq ∧ dxp

=
m∑

i;j=1

n∑
p;q=1

@�i
@yj

(f(x)) @fj@xq
(x) @fi@xp

(x) dxq ∧ dxp +
m∑

i=1

∑

1≤p<q≤n

@2fi
@xp@xq

(x)(dxq ∧ dxp + dxp ∧ dxq)

=
m∑

i;j=1

n∑
p;q=1

@�i
@yj

(f(x)) @fj@xq
(x) @fi@xp

(x) dxq ∧ dxp:

At the same time by Proposition 6 and Example 4

f∗d! =
m∑

i;j=1
f∗ @�i@yj

∧ f∗dyj ∧ f∗dyi =
m∑

i;j=1

n∑
p;q=1

@�i
@yj

(f(x)) @fj@xq
(x) @fi@xp

(x) dxq ∧ dxp = df∗!:

For an arbitrary k it su�ces (because f∗ is a linear map) to check naturality of d for the form ! = �(x)dxi1 ∧
· · · ∧ dxik . Then d! = d� ∧ dxi1 ∧ · · · ∧ dxik , so by Proposition 6 one has f∗d! = f∗d� ∧ f∗dxi1 ∧ · · · ∧ f∗dxik and
also f∗! = (f∗�)f∗dxi1 ∧ · · · ∧ f∗dxik . The operator d has been proved to be natural for 0-forms (functions) and
1-forms, to satisfy d2 = 0 and to be a super-derivation, so one has

df∗! = d(f∗�) ∧ f∗dxi1 ∧ · · · ∧ f∗dxik +
k∑
s=1

(−1)s+1(f∗�) ∧ f∗dxi1 ∧ · · · ∧ df∗dxis ∧ · · · ∧ f∗dxik

= f∗d� ∧ f∗dxi1 ∧ · · · ∧ f∗dxik +
k∑
s=1

(−1)s+1(f∗�) ∧ f∗dxi1 ∧ · · · ∧ f∗d2xis ∧ · · · ∧ f∗dxik

= f∗d� ∧ f∗dxi1 ∧ · · · ∧ f∗dxik = f∗d!
Now prove the theorem for an arbitrary manifold M . Let a ∈ U ⊂M where (U; V; x) is the system of coordinates.

For a k-form ! on M let !x def= (x−1)∗ !|U ; it is a k-form on V ⊂ Rn. Take by de�nition d! def= x∗(d!x); here !x
is a k-form on an open subset of Rn, so d!x was de�ned earlier.

Check now that d! does not depend on the choice of coordinates. Indeed, let ( ~U; ~V ; y) be another system of
coordinates and a ∈ U ∩ ~U , with ' = y ◦ x−1 : W → ~W being a transition map (W ⊂ V and ~W ⊂ ~V are
open subsets). Then !x = '∗!y, so d!x = '∗d!y: ' is a map between open subsets of Rn, so the naturality
of d with respect to such maps is already proved. Therefore the d! de�ned by means of y is (y−1)∗'∗d!x =
(y−1)∗y∗(x−1)∗d!x = (x−1)∗d!x = d!.

So, the exterior di�erentiation operator d is well-de�ned on any manifold. Properties of the operator d on
arbitrary manifolds follow immediately from the de�nition and the corresponding properties of d on Rn; details of
proofs are left to the reader. ¤
3. Orientation of a manifold. An atlas {(U�; V�; x�)} on a manifold M is called oriented if for any �; � and for
any u ∈ x�(U� ∩ U�) one has det'′��(u) > 0. (Recall that the transition map '�� is smooth and has an inverse
map '��, so that '′��(u) : Rn → Rn is invertible, too. Hence '′��(u) 6= 0 for any atlas; orientation chooses the
sign here.) Two oriented atlases are called equivalent if their union is an oriented atlas, too. The equivalence class
of oriented atlases on M is called an orientation of M . A manifold having an oriented atlas is called orientable; a
manifold with the orientation chosen is called oriented.
Remark . A connected orientable manifold has exactly two orientations. The proof is a not-so-easy exercise.
Example 5. A circle S1 has an atlas of two coordinate systems, (Ua; (−�; �); x) and (Ub; (0; 2�); x) where a; b are
two opposite points, Ua def= S1 \ {a} and Ub def= S1 \ {b}, and the coordinates x and y are polar angles counted
from the point b. The intersection Ua ∩ Ub consists of two arcs, ab and ba, and the (only one) transition map is
'ab(u) = u on the arc ba and 'ab = u+ 2� on the arc ab. Thus one has det'′ab(u) = 1 everywhere and the atlas is
oriented. If (Uc; (−�; �); z) is the third chart with z = −x and Uc = Ua, then 'ac(u) = −u, and det'′ac(u) = −1.
So the three-chart atlas is not oriented, unlike the two-chart one.
Example 6. The Moebius band M is the square [0; 1] × (0; 1) with the identi�cations (0; t) ∼ (1; 1 − t) for all
t ∈ (0; 1). It has an atlas of two charts: U1 = V1 = (0; 1)× (0; 1) ⊂M and the coordinate map is the identity map
(x1(a; b) = a; x2(a; b) = b), and the other is U2 = {(a; b) ∈ M | a 6= 1=2}, and the map is y1(a; b) = a; y2(a; b) = b
for a > 1=2 and y1(a; b) = a + 1; y2(a; b) = 1 − b for a < 1=2. Thus one has det'′12(a; b) = 1 for a > 1=2 and
det'′12(a; b) = −1 for a < 1=2. So the atlas is not oriented. In fact, the Moebius band with the standard smooth
structure does not have an oriented atlas (is not orientable); we do not give the proof of this fact here.


