HSE, FALL 2016 FOUNDATIONS OF DIFFERENTIAL GEOMETRY

LECTURE 6

ABSTRACT. Operations on vector bundles. Differential forms. Orientation.

1. Operations on vector bundles.

1.1. Dual bundle. Let E be a rank n vector bundle on the base B, B = (J,U,, a trivialization, and .3 :

Ua NUs — GL(n,R), transition maps. Consider maps {Eaﬁ def ¢3Ta = ((walg)*l)T on the same trivialization (T’

means a transposed matrix).

Proposition 1. Maps {/Jva/g satisfy the cocycle condition.
Proof. tan = ¢T, = IT =TI (the identity matrix). Yastip, = YT 07, = (byat5a)T = ¢T, = Yan. O

So, Jaa are transition maps of a rank n vector bundle. This bundle is called a dual bundle to E and is denoted
E~.
For any vector bundle E and a point a € B of the base we will be denoting F, def p~1(a) the fiber over the point

a. Let ve E, and £ € E7. Fix an index a such that a € U,; then v is represented in the corresponding trivializing

chart as (a,z, «) and &, as (a, 7, «). Define the bilinear form (-,-) : EX x E, — R by (£, v) def (1, ) where the braces

mean the standard scalar product in R™ (recall that z,n € R™ by the definition of the trivialization). If € Ug then
the vectors v and ¢ are represented in the corresponding trivialization as (a,z’,8), (a,n’, 8) where ' = ¢,5(a)z
and 1 = ap(a)y. Then the value (¢,v) becomes (1/,2') = (Yo (@), Y (a)2) = (Y (@) "5 (a) n, 2) = (n.2),
that is, does not change. So, the value (£,v) is well-defined and does not depend on the choice of a trivializing
chart. Since the standard scalar product in R™ is a nondegenerate biliniar form, the form (-, ) : EX x E, — R also
is. So, one can understand E}, for every a € B, as a dual space to the vector space E,, as the notation suggests.
For a manifold M the bundle dual to the tangent bundle T'M is called a contangent bundle and is denoted T M.

Theorem 1. Any real vector bundle on a manifold is equivalent to its dual.

Proof. Since E7 is dual to E, for every a, a linear isomorphism R, : E, — L is the same as a nondegenerate

bilinear form B, on E,: B,(u,v) def (Ro(u),v), and vice versa, if B, is known then R,(u) : E, — R is defined as

Ry (u)v LB, (u,v). If a bilinear form B, is symmetric then it is the same as a quadratic form @, on E,: Q,(u) =

B, (u,u), and vice versa, if @, is known then a symmetric B, is defined by B, (u,v) = 3(Qq(u+v) —Qq(u) —Qq(v)).
So, to prove the theorem it is enough to define a nondegenerate quadratic form @, on every E,, which depend on
a continuously (or smoothly, if smooth bundles are considered).

If a € U, (a trivializing chart for E and E*) and v € E, is represented by a triple (a,z, @) in the corresponding

trivialization, then take an) (v) def (z, ) where braces mean the standard scalar product in R™. Let then g, be a

partition of uniry subordinate to the cover M = J,_, U,. Define Q,(v) def 3, 0a(@)Q5 (v). Since the form QL™ is

positive definite, 04(a) > 0 and ) 0q(a) = 1, the form @, is positive definite and therefore nondegenerate. [

By Theorem 1 the contangent bundle 7* M of a manifold M is equivalent to its tangent bundle. Nevertheless the
properties of the operation (a functor) T relating to a manifold its cotangent bundle are quite different from those
of the operation (a functor) T relating to a manifold its tangent bundle. In particular, if f : M; — M> is a smooth
map then there is no analog of the bundle morphism f’ : TM; — T M, for cotangent bundles. At the same time,
let v be a section of the cotangent bundle to the manifold Ms (such section is called a differential 1-form on My;
the term will be explained below in Section 2). Then define a section f*v of the bundle T*M; as follows: the value
of f*v(a) where a € M is the linear functional on T,M; taking on a vector u € T, M; the value (v(a), f'(a)u).
The section f*v is called a pullback of the 1-form v to the manifold Mjy; if M, is a submanifold of M and f, a
tautological embedding (for a € M; one has f(a) = a € M), then f*v is called a restriction of the form v to
the submanifold. Note that for vector fields (sections of the tangent bundle) the pullback (and even a restriction)
cannot be defined: nor a pushforward. For example, a vector Z(a) in the point a € My of a submanifold M; C M,
need not be tangent to M;.

Let M be a manifold, a € M a point covered by a chart U with the coordinate system = = (z1,...,z,). A basis
in T M dual to the basis %(a), e %(a) is denoted dx(a), ..., dz,(a) (dual basis means that (dz;(a), %(a))
is equal to 1 if i = j and to 0 otherwise).
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1.2. Direct sum. Let Eq, Ey be vector bundles of ranks nq,n2 on the same base B. Without loss of generality one
can suppose that they have the same set of trivializing charts U, (prove!); denote by 1/)( op and 1/1 the corresponding

transition maps. For a point @ € B define a map ¢o5(a) € GL(n1 + n2,R) as 9,5(a) defz/) 4(a) @ 1/1(2)( ) (a block
diagonal matrix (nq +mn2) X (n1 + ng) with the n; x ny-block w&lﬁ) (a) in the upper left corner and the ny X na-block

1/1(2)( ) in the lower right; the remaining matrix elements are 0).

Proposition 2. The maps 1,3 satisfy the cocycle condition and are therefore transition maps of a vector bundle
of rank ny + no denoted by By @& Es. The bundle E = E; & Ey contains two subbundles isomorphic to FEy and

Es and such that E, (El) @ (F3), for every a (fibers of the subbundles on the right-hand side). (In other
words, there are bundle morphisms 11 : E1 — E and 12 : Ey — E which are embeddings on every fiber, and

Ey = u((E1)a) ® 12((E2)a)-)

The proof of Proposition 2 is an exercise and is similar to the proof of Proposition 1 and the reasoning after it.

1.3. Tensor product. Let E,, Es be vector bundles of ranks ny,ny on the same base B; suppose again that they
have the same trivialization U, and the transition maps 1/)&1/3) and 1/)((5/3) Then define ¢,5(a) = 11)&1)( ) ® 1/1(2)( ) €
GL(n1n2,R) (a matrix ning X nine; its elements are indexed by the pairs of pairs of indices ((i, j), (k, ?0)) as follows.

wag(a)(i7j)7(k7g) = ’(b((xlﬁ) (a)zkwgﬁ) (a)jl; here i, k= 1, B (31 and j,E = 1, Lo,

Proposition 3. The maps ap satisfy the cocycle condition and are therefore transition maps of a vector bundle of
rank niny denoted by E1 @ Ey. The fiber (Ey @ Es), is isomorphic to (E1), ® (Es), for every a; this isomorphism
can be made smooth on a.

Again, the proof is an exercise.

Ezample 1. Let M = RP! = S* and E be a tautological (Moebius) bundle of rank 1 on M (see Problem 1 of
Set 3). Its trivialization consists of two charts, U, = S* \ {a} and U, = S* \ {b} where a and b are opposite (or
any two distinct) points in S*. The intersection U, N U, consists of two arcs, A; and A, and the transition map
¥(q) € GL(1,R) = R\ {0} is ¥(¢q) = 1 for ¢ € A; and ¢(q) = —1 for g € Az. Then the transition map for the
tensor square £¢2 = E® E is ¢(q)? = 1 for every ¢q. Thus, the rank 1 bundle £®? is trivial. The bundle E®™ is
trivial for n even and isomorphic to F for n odd.

1.4. Ezternal (wedge) power. Let E be a rank n vector bundle, and 1 < k < n, an integer. Let {U,} be a
trivialization, and 1,5 € GL(n,R), transition maps. Define 1,5(a) = (¢as(a))* (if A is a (n x n)-matrix then
A g a (1) x (7))-matrix with rows and columns indexed by increasing sequences 1 < i) < -+ < iy < n; the
matrix element corresponding to (iy,...,4) and (j1,...,Jk) is equal to the determinant of the submatrix of A
formed by the rows iy,...,i; and the columns ji,...,j;. If A is a matrix of a linear operator V — V then A" is
a matrix of the linear operator A¥V — A¥V mapping every decomposable element vy A -+ Avy to Avy A+ A Avg.)

Proposition 4. The maps Jaﬁ satisfy the cocycle condition and are therefore transition maps of a vector bundle
of rank (Z) denoted by A*E. The fiber (A*E), is the k-th external power A*E,.

The proof is an exercise (hint: (AB)"\F = AN Bk,

2. k-forms and a differential. Let M be a n-dimensional manifold, and 1 < k < n, an integer. A section of the
bundle A¥T*M is called a differential k-form. Let a € U where (U,V, ) is a coordinate system. A basis of the
space A’“T;M is formed by the wedge products dz;, A --- Adx;, where 1 <14y < -+ < i < n, and dz1,...,dz,
is the standard basis in 7' M. Thus in coordinates a k-form looks like Zl§i1<,,,<ik§n Wiy g (@) dziy Ao ANdy, .
The set of k-forms on M is sometimes denoted by Q*(M); it is an infinite-dimensional vector space and naturally
a module over the algebra C'*°(M).

It follows from Proposition 4 and Proposition 1 that the fiber A*T*M of the bundle is the space of k-linear
skew-symmetric forms on the tangent space T, M. If f : M; — M, is a smooth map, then one can define a pullback
ffw of a k-form w on M, as a k-form on M; such that the value of f*w(a) on vectors vy, ...,v, € T,M; is equal
to w(a)(f'(a)v, - .., f'(a)vy). The pullback is a linear operation.

Ezample 2. Let f : R™ — R" be a smooth map. Then for the 1-form f*dx; and any j =1,...,n one has

K 9 Ofp 0\ _ Ofi
axj> (de “f B z’z < Oz 81;,, Oz

(f*dx;,

* — n Ofi .
Hence, f*dw; =3 7, oy dz;.




If V is a n-dimensional vector space then the direct sum AV = @;_, VA is an algebra (called the exterior
algebra of V) with respect to the exterior multiplication of forms. Namely, elements of V¥ are k-linear skew-
symmetric forms on V*, and the wedge product of the ki-form v and the ko-form v is defined as a (k1 + k2)-form
@ A v such that

(WAV)(ELs -5 Eratha) > (—Dit A D2y & 0(E €y)-
{1,....,k1+ko }=IUJ
I:{ll<<2k1}7‘]:{]1<<1k2}

Proposition 5. The exterior algebra is associative and super-commutative: (u Av) Aw =uA(vAw) and v Au =
(_1)k1k2u Av for all u € A’“V, v E Ak2V, w e Ak,

The proof is a standard exercise in linear algebra. The 0-th exterior power of V' is by definition a one-dimensional
space equal to R

So, the direct sum @2:0 OF(M) is an graded associative super-commutative algebra, with the 0-th component
being equal to C°°(M). A graded algebra is naturally a module over its 0-th component (because if A = @), A
then the product of an element z € A° and an element y € A* is zy € A*), so Q% (M) is a C°°(M)-module.

Ezample 3. Let S® C R""! be a unit sphere. Define a skew-symmetric n-form w(a) on T,S™ as follows:
w(a)(vy,...,v,) = det(a,v1,...,v,) where a = (a1,...,a,+1) € S™ and v; = (Vi1, ..., Vint1) ERi=1... n,
are vectors tangent to S™ (that is, normal to a) at a. Thus one defines a n-form on S™ called the volume form.
The value w(a) of the volume form is nondegenerate for any a.

Proposition 6. The exterior product is a natural operation, that is, it commutes with pullbacks: f*(wi Awq) =
ffwr A ffws.

Proof is an exercise.

Definition 1. Let f € C°°(M) be a smooth function on M. By df one denotes a 1-form such that the value
(df (a),v) of the linear functional df (a) : T,M — R on a vector v € T, M is equal to v(f).
(Recall that a vector v € T, M is a linear functional on C*°(M).)

Ezample 4. Let M = R™ and a € M; then f becomes a smooth function of n real variables. For a Vector v = 62

one has v(f) = %(a) = (df (a),v), which gives for df(a) the expression df (a) = ;Tfl(a) dey + -+ 5~ ( ) dzy, -

i

Theorem 2. There exists a unique linear operator d : QF (M) — Q1 (M) with the following properties:
(1) For k=0 it is given by Definition 1.
(2) It is a super-derivation: if u € Q¥ (M) and v € Q%2 (M) then d(u Av) = du Av + (—1)¥1u A dv.
This operator commutes with pullbacks df*w = f*dw and satisfies the equality d* = 0.

The operator d is called exterior differentiation; the form dw is called the exterior derivative of the form w.

Proof. Prove the theorem first for the manifold M = R". The covectors dz;, A --- Adx;, for all 1 < iy <
- < i < n form a basis in A*T,R" = A*R" for all a € R", and therefore any k-form is given by the formula
w = Zl§i1<---<ik§n Vig,...ip (@) dziy A --- Adz;, . Take by definition

duw & Z dviy, i (@) Ndzgy N N, = Z Z 3;/;%) dx; Ndzi, N+ ANdxy,.

1<iy<-<ip<n i=11<iy <--<ixr<n

For O-forms the operator d coincides with that of Definition 1, cf. Example 4. Equality d(u A v) = du A v +
(—=1)*1u A dv for any u and v is checked by a straightforward computation.

Prove that d® = 0. Let first k = 0; then ddv(z) = d(X[, #2% dw;) = 37—, 5= dwj A dai. Since 524 =

Ox;0x;
81‘9,2(;@ and dzj Adz; = —dz; Ndxj, the terms in the last sum cancel palrwise and d*v(z) = 0. Then take k = 1, so
;0;
w =Y, vi(x) dr;. Then dw = 30, g;’] dxj Adz; and ddw = 337, M 8” dey ANdxj Nde; =0 by the same
reason. Now by the super-derivation property for any k one has ddw = d(2“<_“<ik dvi, .., Ndxi N Ndxy,) =

Zi1<---<ik szil,...ﬂ'k A d.’Eil VARERIVAN d.’Iilk — dl/ih...,ik A d2.’17i1 VANRRIAN d.’Iilk +---=0.

Prove that the operation d is natural, that is, commutes with pullbacks. Consider a smooth map f : M; =
R® — M, = R™ given by the formula f(z) = (fl(asl,...,xn),...,fm(xl,.. ,Tn)). Again, let first £ = 0, so
that w = v(y) (a function of the argument y € R™), and dw = Y ", ay Y dy;. One has f*w = v(f(z)), and

df*w = Y1, 6"((%(””)) dr; = 370, 2050, (9y (f(:z:))af’( )dz;. By Example 2 and Proposition 6 one has f*dw =

S [ ATy = 0 5 (F () iy 5t (@) day = df*w




m v;

For k = 1 the reasoning is similar: w = 31", v;(y) dy; and dw = 377", o

[fw= 2?;1 Zn: Vz(f(y)) L dxpv 50

- 81 o af; 92T,
df*w = Z Z v f]( )3:1{( dxq/\dxp—kz Z vi(f 8:1:1,5:1: (%) dzy N dxy,

1,j= 1pq1 i=1 p,q=1

dy; N dy;. Then by Proposition 6

zz‘”ﬁ Dol Syt nry 4 S S ey, o+
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At the same time by Proposition 6 and Example 4
" 81/z 7] ofi .
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For an arbitrary k it suffices (because f* is a linear map) to check naturality of d for the form w = v(z)dz;, A

-+ Adx;, . Then dw = dv Adx;, A--- Ndz;,, so by Proposition 6 one has f*dw = f*dv A f*dx;, N--- A f*dz;, and

also f*w = (f*v)f*dx;, A--- A f*dx;,. The operator d has been proved to be natural for 0-forms (functions) and
1-forms, to satisfy d> = 0 and to be a super—derivation so one has

df*w =d(f*v) A frdzy, N A frdag, —I—Z DY) A frdeg, A NdfFdag, Ao A frdag,

s=1

= frdv A frdeg, A A frdeg, + Z DY) A frdei, A A FrdPa, A A Frdag,
s=1
= fr*dv A frdx;, N A frdy, = frdw
Now prove the theorem for an arbitrary manifold M. Let a € U C M where (U, V, ) is the system of coordinates.

For a k-form w on M let w, (z71)* w|y; it is a k-form on V' C R™. Take by definition dw el *(dw,); here w,

is a k-form on an open subset of R", so dw, was defined earlier.

Check now that dw does not depend on the ch01ce of coordinates. Indeed, let (U,V,y) be another system of
coordinates and @« € U NU, with ¢ = yoaz~! : W — W being a transition map (W C V and W C V are
open subsets). Then w, = ¢*wy, so dw, = cp*dwy p is a map between open subsets of R", so the naturality
of d with respect to such maps is already proved. Therefore the dw defined by means of y is (y~!)*¢*dw, =
(v Y *y*(z7 1) dw, = (271 dw, = dw.

So, the exterior differentiation operator d is well-defined on any manifold. Properties of the operator d on
arbitrary manifolds follow immediately from the definition and the corresponding properties of d on R"; details of
proofs are left to the reader. O

3. Orientation of a manifold. An atlas {(U,,V,,2)} on a manifold M is called oriented if for any «, 3 and for
any u € z4(Uy NUB) one has det gp’aﬂ(u) > 0. (Recall that the transition map @,s is smooth and has an inverse
map ¢gq, S0 that @&B (u) : R® — R" is invertible, too. Hence wgﬁ(u) # 0 for any atlas; orientation chooses the
sign here.) Two oriented atlases are called equivalent if their union is an oriented atlas, too. The equivalence class
of oriented atlases on M is called an orientation of M. A manifold having an oriented atlas is called orientable; a
manifold with the orientation chosen is called oriented.

Remark. A connected orientable manifold has exactly two orientations. The proof is a not-so-easy exercise.

Ezample 5. A circle S! has an atlas of two coordinate systems, (U,, (—m,7),z) and (Uy, (0,27),z) where a,b are
two opposite points, U, % S1 \ {a} and U, Lf g1 \ {b}, and the coordinates = and y are polar angles counted
from the point b. The intersection U, N Uy consists of two arcs, ab and ba, and the (only one) transition map is
ap(u) = u on the arc ba and ¢p,; = u+ 27 on the arc ab. Thus one has det ¢/, (u) = 1 everywhere and the atlas is
oriented. If (U, (—w, ), 2) is the third chart with z = —z and U, = U,, then @,.(u) = —u, and det ¢/, .(u) = —1.
So the three-chart atlas is not oriented, unlike the two-chart one.

Ezample 6. The Moebius band M is the square [0,1] x (0,1) with the identifications (0,¢) ~ (1,1 — ¢) for all

€ (0,1). It has an atlas of two charts: U; =V; = (0,1) x (0,1) C M and the coordinate map is the identity map
(z1(a,b) = a,x2(a,b) = b), and the other is Uy = {(a,b) € M | a # 1/2}, and the map is y1(a,b) = a,y2(a,b) = b
for a > 1/2 and y1(a,b) = a + 1,y2(a,b) = 1 — b for @ < 1/2. Thus one has det ¢],(a,b) = 1 for a > 1/2 and
det ¢, (a,b) = —1 for a < 1/2. So the atlas is not oriented. In fact, the Moebius band with the standard smooth
structure does not have an oriented atlas (is not orientable); we do not give the proof of this fact here.



