## LECTURE 5

Abstract. Phase curves and commutators of vector fields.

1. Phase curves of a vector field. A curve $\gamma: \mathbb{R} \rightarrow M$ on a smooth manifold $M$ is called an phase curve of a vector field $Z$ if $\gamma^{\prime}(t)=Z(\gamma(t))$ for all $t \in \mathbb{R}$. One can also consider phase curves defined on open subsets of $\mathbb{R}$, say, segments $(a, b)$.

Theorem 1. Let $M$ be a manifold and $Z$, a smooth vector field on it. Then for any $a \in M$ there exists an open subset $U \subset M, a \in U$, and a number $\varepsilon>0$ such that for any $b \in U$ there exists a unique phase curve $\gamma_{b}:(-\varepsilon, \varepsilon) \rightarrow M$ of the vector field $Z$ such that $\gamma_{b}(0)=b$. The map $\Gamma: U \times(-\varepsilon, \varepsilon) \rightarrow M$ given by a formula $\Gamma(b, t) \stackrel{\text { def }}{=} \gamma_{b}(t)$ is smooth.

Uniqueness in this theorem means that if $\gamma_{1}:\left(-\varepsilon_{1}, \varepsilon_{1}\right) \rightarrow M$ and $\gamma_{2}:\left(-\varepsilon_{2}, \varepsilon_{2}\right) \rightarrow M$ are phase curves with $\gamma_{1}(0)=\gamma_{2}(0)$ then they coincide where they both are defined, that is, $\gamma_{1}(t)=\gamma_{2}(t)$ for any $t \in\left(-\varepsilon_{1}, \varepsilon_{1}\right) \cap\left(-\varepsilon_{2}, \varepsilon_{2}\right)$.
Proof. Since it is a local statement, one can suppose that $M=\mathbb{R}^{n}$. Then the vector field $Z$ is $Z(x)=\sum_{i=1}^{n} z_{i}\left(x_{1}, \ldots, x_{n}\right) \frac{\partial}{\partial x_{i}}$, and the curve $\gamma(t) \stackrel{\text { def }}{=}\left(\gamma_{1}(t), \ldots, \gamma_{n}(t)\right)$ is its phase curve if the functions $\gamma_{1}(t), \ldots, \gamma_{n}(t)$ are solutions of the system of ordinary differential equations (ODE) $\frac{d}{d t} \gamma_{i}(t)=z_{i}\left(\gamma_{1}(t), \ldots, \gamma_{n}(t)\right), i=1, \ldots, n$. The theorem follows now from the existnce and uniqueness theorem for systems of the first-order ODE.

If $M$ is compact, the situation becomes global:
Theorem 2. Let $M$ be a compact manifold and $Z$, a smooth vector field on it. Then there exists a smooth map $\Gamma: M \times \mathbb{R} \rightarrow M$ (called a phase flow of the vector field $Z$ ) such that
(1) $\Phi(a, 0)=a$ for all $a \in M$.
(2) $\Phi\left(\Phi\left(a, t_{1}\right), t_{2}\right)=\Phi\left(a, t_{1}+t_{2}\right)$ for all $a \in M$ and $t_{1}, t_{2} \in \mathbb{R}$.
(3) $\left.\frac{d \Phi(a, t)}{d t}\right|_{t=\tau}=Z(\Phi(a, \tau))$.

Taking $t_{1}=t$ and $t_{2}=-t$ in Property 2, one obtains $\Phi(\Phi(a, t),-t)=\Phi(a, 0)=a$ (from Property 1). Thus, for any fixed $t \in \mathbb{R}$ the map $\Phi_{t}: M \rightarrow M$ defined by $\Phi_{t}(a)=\Phi(a, t)$ is a diffeomorphism (it is smooth because $\Phi$ is smooth and its inverse is $\Phi_{-t}$, which is also smooth). Thus, Properties 1 and 2 (known together as 1-parametric group property) can be expressed by saying that $t \mapsto \Phi_{t}$ is a homomorphism from the additive group $\mathbb{R}$ (the operation is addition of numbers) to the group of diffeomorphisms of the manifold $M$ (the operation is composition of maps).
Proof of Theorem 2. Take for every $a \in M$ an open set $U_{a} \subset M$ and a number $\varepsilon_{a}>0$ as in Theorem 1. By the compactness of $M$ there exist points $a_{1}, \ldots, a_{N} \in M$ such that $M=U_{a_{1}} \cup \cdots \cup M_{a_{N}}$; take $\varepsilon \stackrel{\text { def }}{=} \min \left(\varepsilon_{a_{1}}, \ldots, \varepsilon_{a_{N}}\right)>0$. Then for any point $a \in M$ there exists (and is unique) a phase curve $\gamma_{a}:(-\varepsilon, \varepsilon) \rightarrow M$ with $\gamma(0)=a$. For any $s \in(-\varepsilon, \varepsilon)$ the curve $\gamma_{a, s}(t) \stackrel{\text { def }}{=} \gamma_{a}(t+s)$ is a phase curve of $Z$ defined on an interval $(-\varepsilon+s, \varepsilon-s)$ and such that $\gamma_{a, s}(0)=\gamma_{a}(s)$. Due to uniqueness, $\gamma_{a . s}(t)=\gamma_{\gamma_{a}(s)}(t)$ for all possible $t$. This allows to extend $\gamma_{a}$ to the smooth curve $(-\varepsilon, 3 \varepsilon / 2) \rightarrow M$ (to be called still $\gamma_{a}$ saying that $\gamma_{a}(t)$ is defined as it previously was for $|t|<\varepsilon$ and $\gamma_{a}(t) \stackrel{\text { def }}{=} \gamma_{\gamma_{a}(\varepsilon / 2)}(t-\varepsilon / 2)$ if $\varepsilon / 2<|t|<3 \varepsilon / 2$; the curve obtained is again an phase curve of $Z$. In a similar manner one may extend $\gamma_{a}$ to an phase curve $(-3 \varepsilon / 2,3 \varepsilon / 2) \rightarrow M$, etc., proving eventually that for any $a \in M$ there exists a unique phase curve $\gamma_{a}: \mathbb{R} \rightarrow M$ of the vector field $Z$.

Define now $\Phi(a, t) \stackrel{\text { def }}{=} \gamma_{a}(t)$. Property 1 is obvious; Property 3 expresses the fact that $\gamma_{a}$ is a phase curve. Property 2 follows from uniquenes of the phase curve by the trick already used in the previous paragraph: for any fixed $t_{1}$ the curve $\delta(t) \stackrel{\text { def }}{=} \Phi\left(a, t_{1}+t\right)$ is a phase curve of $Z$ with $\delta(0)=\Phi\left(a, t_{1}\right)$. By uniqueness, $\delta(t)=\Phi\left(\Phi\left(a, t_{1}\right), t\right)$ for any $t$; take $t=t_{2}$.
Example 1. A phase curve of the vector field $\frac{\partial}{\partial x_{1}}$ on $\mathbb{R}^{n}$ passing through a point $a=\left(a_{1}, \ldots, a_{n}\right)$ is $\gamma_{a}(t)=$ $\left(a_{1}+t, a_{2}, \ldots, a_{n}\right)$; it is defined for all $t \in \mathbb{R}$. An phase curve of the vector field $x_{1} \frac{\partial}{\partial x_{1}}+\cdots+x_{n} \frac{\partial}{\partial x_{n}}$ passing through a point $a$ is $\gamma_{a}(t)=a e^{t}, t \in \mathbb{R}$.

Example 2. Phase curves of the vector field $x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}$ on $\mathbb{R}^{2}$ are $\gamma(t)=r(\cos (t+\varphi), \sin (t+\varphi))$ for all $r \geq 0$ and $\varphi \in \mathbb{R}$. They are defined for all $t \in \mathbb{R}$.

Example 3. A phase curve of the vector field $t^{2} \frac{d}{d t}$ passing through a point $a \in \mathbb{R}$ is $\gamma_{a}(t)=\frac{a}{1-a t}$. These curves (except $\gamma_{0} \equiv 0$ ) are defined on infinite segments: $t \in(-\infty, 1 / a)$ for $a>0$ and $t=(1 / a,+\infty)$ for $a<0$. So, there is no $\varepsilon>0$ such that all $\gamma_{a}$ are defined on $(-\varepsilon, \varepsilon)$. For any segment $(p, q) \subset \mathbb{R}$, though, there exists such $\varepsilon$ that $\gamma_{a}$ for all $a \in(p, q)$ are defined on $(-\varepsilon, \varepsilon)$ (this is a particular case of Theorem 1).

## 2. Commutator of vector fields.

Theorem 3. Let $A, B: X \rightarrow X$ be derivations of an associative commutative algebra $X$. Then the commutator $C \stackrel{\text { def }}{=}[A, B] \stackrel{\text { def }}{=} A \circ B-B \circ A$ is also a derivation ( $\circ$ meaning composition of maps).

Proof. The map $C$ is apparently linear; take now $f, g \in X$, so $C(f g)=A(B(f g))-B(A(f g))=A(f B(g)+B(f) g)-$ $B(f A(g)+A(f) g)=A(f) B(g)+f A(B(g))+A(B(f)) g+B(f) A(g)-B(f) A(g)-f(B(A(g))-B(A(f)) g-A(f) B(g)=$ $f C(g)+C(f) g$.

Corollary 1. A commutator of two vector fields on a manifold $M$ is a vector field.

Here vector fields are considered as derivations of the algebra $C^{\infty}(M)$ of smooth functions on $M$. In coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$ if $A=\sum_{i=1}^{n} a_{i}(x) \frac{\partial}{\partial x_{i}}$ and $B=\sum_{i=1}^{n} b_{i}(x) \frac{\partial}{\partial x_{i}}$ then for any function $f \in C^{\infty}(M)$ one has

$$
\begin{aligned}
{[A, B](f) } & =A\left(\sum_{i=1}^{n} b_{i}(x) \frac{\partial f}{\partial x_{i}}\right)-B\left(\sum_{i=1}^{n} a_{i}(x) \frac{\partial f}{\partial x_{i}}\right)=\sum_{i, j=1}^{n} a_{j}(x) \frac{\partial b_{i}(x)}{\partial x_{j}} \frac{\partial f}{\partial x_{i}}-\sum_{i, j=1}^{n} b_{j}(x) \frac{\partial a_{i}(x)}{\partial x_{j}} \frac{\partial f}{\partial x_{i}} \\
& + \text { terms containing } \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} \text { that have to cancel by Corollary } 1 .
\end{aligned}
$$

So, in coordinates $[A, B]=\sum_{i=1}^{n}\left(\sum_{j=1}^{n} a_{j}(x) \frac{\partial b_{i}(x)}{\partial x_{j}}-b_{j}(x) \frac{\partial a_{i}(x)}{\partial x_{j}}\right) \frac{\partial}{\partial x_{i}}$.
We are going now to give a geometric description of the commutator of vector fields. Take a point $a \in M$ and let $\gamma_{a}:(-\varepsilon, \varepsilon) \rightarrow M$ be an phase curve of the field $A$ with $\gamma_{a}(0)=a$; take $P_{t} \stackrel{\text { def }}{=} \gamma_{a}(t)$ for any $t \in(-\varepsilon, \varepsilon)$. Let $\delta_{P_{t}}:(-\varepsilon, \varepsilon) \rightarrow M$ be an phase curve of the vector field $B$ with $\delta_{P_{t}}(0)=P_{t}$; take $Q_{t, s} \stackrel{\text { def }}{=} \delta_{P_{t}}(s)$ for any $s \in(-\varepsilon, \varepsilon)$. Then let $\gamma_{Q_{t, s}}:(-\varepsilon, \varepsilon) \rightarrow M$ be an phase curve of $A$ with $\gamma_{Q_{t, s}}(0)=Q_{t, s}$; take $R_{t, s} \stackrel{\text { def }}{=} \gamma_{Q_{t, s}}(-t)$ (the same $t$ as before!). Finally, let $\delta_{R_{t, s}}:(-\varepsilon, \varepsilon) \rightarrow M$ be an phase curve of the vector field $B$ with $\delta_{R_{t, s}}(0)=R_{t, s}$; take $U(t, s) \stackrel{\text { def }}{=} \delta_{R_{t, s}}(-s)$.

Now $U:(-\varepsilon, \varepsilon)^{2} \rightarrow M$ is a smooth map; by uniqueness of an phase curve one has $U(t, 0)=U(0, s)=a$ for all $t, s \in(-\varepsilon, \varepsilon)$. Fix $s \in(-\varepsilon, \varepsilon)$; then the formula $\lambda_{s}(t) \stackrel{\text { def }}{=} U(t, s)$ defines a smooth curve $\lambda_{s}:(-\varepsilon, \varepsilon) \rightarrow M$ with $\lambda_{s}(0)=a$. The equivalence class of the curve $\lambda_{s}$ at $a$ is a vector $\ell(s) \in T_{a} M$; so $\ell:(-\varepsilon, \varepsilon) \rightarrow T_{a} M$ is a smooth map.

Theorem 4. $\ell^{\prime}(0)=[A, B](a)$.

Proof. To compute $\ell^{\prime}(0)$ it is enough to operate with $\ell(s)$ for $s \in(-\varepsilon, \varepsilon)$ with $\varepsilon>0$ arbitrarily small; to define such $\ell(s)$ one has to know $U(t, s)$ for $t, s \in(-\varepsilon, \varepsilon)$. So, the statement has local nature, and it is enough to prove it for $M=\mathbb{R}^{n}$ and $a=0$.

Consider the Taylor's formula for the map $U: U(t, s)=u_{00}+u_{10} t+u_{01} s+u_{11} t s+o(t)+o(s), t, s \rightarrow 0$ (pay attention that the last two terms depend on both $t$ and $s!$. Since $U(t, 0)=U(0, s)=0$, one has $u_{00}=u_{10}=u_{01}=0$, and the last two terms are divisible by $t s$. Thus the curve $\lambda_{s}(t)=u_{11} t s+s o(t)+t o(s)$, hence $\ell(s)=\lambda_{s}^{\prime}(0)=u_{11} s+o(s)$, and $\ell^{\prime}(0)=u_{11}$. So, to prove the theorem it suffices to compute $u_{11}$.

Remember that $A(x)=\left(a_{1}(x), \ldots, a_{n}(x)\right)$ and $B(x)=\left(b_{1}(x), \ldots, b_{n}(x)\right)$. So, $P_{t}=\left(a_{1}(0) t, \ldots, a_{n}(0) t\right)+o(t)$. The term $o(t)$ cannot contribute to the term $u_{11} t s$ in the formula for $U(t, s)$ (explain why!), so we will write simply
$P_{t}=\left(a_{1}(0) t, \ldots, a_{n}(0) t\right)+\ldots$, and will be using $\ldots$ to denote all such"uninteresting" terms. Now

$$
\begin{aligned}
Q_{t, s} & =P_{t}+\left(b_{1}\left(P_{t}\right), \ldots, b_{n}\left(P_{t}\right)\right) s+\ldots \\
& =\left(a_{1}(0) t+b_{1}(0) s+\left.\frac{d}{d \tau} b_{1}\left(P_{\tau}\right)\right|_{\tau=0} t s+\ldots, \ldots, a_{n}(0) t+b_{n}(0) s+\left.\frac{d}{d \tau} b_{n}\left(P_{\tau}\right)\right|_{\tau=0} t s+\ldots\right) \\
& =\left(a_{1}(0) t+b_{1}(0) s+t s \sum_{j=1} a_{j}(0) \frac{\partial b_{1}}{\partial x_{j}}(0)+\ldots, \ldots, a_{n}(0) t+b_{n}(0) s+t s \sum_{j=1} a_{j}(0) \frac{\partial b_{n}}{\partial x_{j}}(0)+\ldots\right), \\
R_{t, s} & =Q_{t, s}-\left(a_{1}\left(Q_{t, s}\right), \ldots, a_{n}\left(Q_{t, s}\right) t+\ldots\right. \\
& =Q_{t, s}-\left(a_{1}(0) t, \ldots, a_{n}(0) t\right)-\left(\sum_{j=1}^{n} b_{j}(0) \frac{\partial a_{1}}{\partial x_{j}}(0) t s+\ldots, \ldots, \sum_{j=1}^{n} b_{j}(0) \frac{\partial a_{n}}{\partial x_{j}}(0)+\ldots\right) \\
& =\left(b_{1}(0) s, \ldots, b_{n}(0) s\right)+t s\left(\sum_{j=1}^{n}\left(a_{j}(0) \frac{\partial b_{1}}{\partial x_{j}}(0)-b_{j}(0) \frac{\partial a_{1}}{\partial x_{j}}(0)\right), \ldots, \sum_{j=1}^{n}\left(a_{j}(0) \frac{\partial b_{n}}{\partial x_{j}}(0)-b_{j}(0) \frac{\partial a_{n}}{\partial x_{j}}(0)\right)\right)+\ldots, \\
U(t, s) & =R_{t, s}-s\left(b_{1}\left(R_{t, s}\right), \ldots, b_{n}\left(R_{t, s}\right)\right)+\ldots=R_{t, s}-s\left(b_{1}(0), \ldots, b_{n}(0)\right)+\ldots \\
& =t s\left(\sum_{j=1}^{n}\left(a_{j}(0) \frac{\partial b_{1}}{\partial x_{j}}(0)-b_{j}(0) \frac{\partial a_{1}}{\partial x_{j}}(0)\right), \ldots, \sum_{j=1}^{n}\left(a_{j}(0) \frac{\partial b_{n}}{\partial x_{j}}(0)-b_{j}(0) \frac{\partial a_{n}}{\partial x_{j}}(0)\right)\right)+\ldots,
\end{aligned}
$$

so the theorem is proved.
Example 4. A commutator of the vector fields $Z=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}$ and $W=x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}$ on $\mathbb{R}^{2}$ is 0 . The corresponding phase flows are $\Psi((x, y), t)=\left(x e^{t}, y e^{t}\right)$ and $\Psi((x, y), s)=(x \cos s+y \sin s,-x \sin s+y \cos s)$ according to Examples 1 and 4. The flows $\Phi$ and $\Psi$ commute: $\Phi(\Psi((x, y), s), t)=e^{t}(x \cos s+y \sin s,-x \sin s+y \cos s)=\Psi(\Phi((x, y), t), s)$. Using the notation from the theorem, the map $U(t, s) \equiv(x, y)$ (a constant map), so $\ell(s) \equiv 0$, confirming the theorem.

