
HSE, FALL 2016 FOUNDATIONS OF DIFFERENTIAL GEOMETRY

LECTURE 5

Abstract. Phase curves and commutators of vector �elds.

1. Phase curves of a vector �eld. A curve  : R → M on a smooth manifold M is called an phase curve of a
vector �eld Z if ′(t) = Z((t)) for all t ∈ R. One can also consider phase curves de�ned on open subsets of R,
say, segments (a; b).
Theorem 1. Let M be a manifold and Z, a smooth vector �eld on it. Then for any a ∈ M there exists an
open subset U ⊂ M , a ∈ U , and a number " > 0 such that for any b ∈ U there exists a unique phase curve
b : (−"; ") → M of the vector �eld Z such that b(0) = b. The map � : U × (−"; ") → M given by a formula
�(b; t) def= b(t) is smooth.

Uniqueness in this theorem means that if 1 : (−"1; "1) → M and 2 : (−"2; "2) → M are phase curves with
1(0) = 2(0) then they coincide where they both are de�ned, that is, 1(t) = 2(t) for any t ∈ (−"1; "1)∩(−"2; "2).
Proof. Since it is a local statement, one can suppose thatM = Rn. Then the vector �eld Z is Z(x) = ∑n

i=1 zi(x1; : : : ; xn) @
@xi ,

and the curve (t) def= (1(t); : : : ; n(t)) is its phase curve if the functions 1(t); : : : ; n(t) are solutions of the system
of ordinary di�erential equations (ODE) d

dti(t) = zi(1(t); : : : ; n(t)), i = 1; : : : ; n. The theorem follows now from
the existnce and uniqueness theorem for systems of the �rst-order ODE. ¤

If M is compact, the situation becomes global:
Theorem 2. Let M be a compact manifold and Z, a smooth vector �eld on it. Then there exists a smooth map
� : M × R→M (called a phase ow of the vector �eld Z) such that

(1) �(a; 0) = a for all a ∈M .
(2) �(�(a; t1); t2) = �(a; t1 + t2) for all a ∈M and t1; t2 ∈ R.
(3) d�(a;t)

dt

∣∣∣
t=�

= Z(�(a; �)).

Taking t1 = t and t2 = −t in Property 2, one obtains �(�(a; t);−t) = �(a; 0) = a (from Property 1). Thus, for
any �xed t ∈ R the map �t : M → M de�ned by �t(a) = �(a; t) is a di�eomorphism (it is smooth because � is
smooth and its inverse is �−t, which is also smooth). Thus, Properties 1 and 2 (known together as 1-parametric
group property) can be expressed by saying that t 7→ �t is a homomorphism from the additive group R (the
operation is addition of numbers) to the group of di�eomorphisms of the manifold M (the operation is composition
of maps).
Proof of Theorem 2. Take for every a ∈ M an open set Ua ⊂ M and a number "a > 0 as in Theorem 1. By the
compactness ofM there exist points a1; : : : ; aN ∈M such thatM = Ua1∪· · ·∪MaN ; take " def= min("a1 ; : : : ; "aN ) > 0.
Then for any point a ∈ M there exists (and is unique) a phase curve a : (−"; ") → M with (0) = a. For any
s ∈ (−"; ") the curve a;s(t) def= a(t + s) is a phase curve of Z de�ned on an interval (−" + s; " − s) and such
that a;s(0) = a(s). Due to uniqueness, a:s(t) = a(s)(t) for all possible t. This allows to extend a to the
smooth curve (−"; 3"=2) →M (to be called still a saying that a(t) is de�ned as it previously was for |t| < " and
a(t) def= a("=2)(t− "=2) if "=2 < |t| < 3"=2; the curve obtained is again an phase curve of Z. In a similar manner
one may extend a to an phase curve (−3"=2; 3"=2) →M , etc., proving eventually that for any a ∈M there exists
a unique phase curve a : R→M of the vector �eld Z.

De�ne now �(a; t) def= a(t). Property 1 is obvious; Property 3 expresses the fact that a is a phase curve.
Property 2 follows from uniquenes of the phase curve by the trick already used in the previous paragraph: for any
�xed t1 the curve �(t) def= �(a; t1 + t) is a phase curve of Z with �(0) = �(a; t1). By uniqueness, �(t) = �(�(a; t1); t)
for any t; take t = t2. ¤
Example 1. A phase curve of the vector �eld @

@x1
on Rn passing through a point a = (a1; : : : ; an) is a(t) =

(a1 + t; a2; : : : ; an); it is de�ned for all t ∈ R. An phase curve of the vector �eld x1
@
@x1

+ · · · + xn @
@xn passing

through a point a is a(t) = aet, t ∈ R.
Example 2. Phase curves of the vector �eld x @

@y − y @
@x on R2 are (t) = r(cos(t+ '); sin(t+ ')) for all r ≥ 0 and

' ∈ R. They are de�ned for all t ∈ R.
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Example 3. A phase curve of the vector �eld t2 d
dt passing through a point a ∈ R is a(t) = a

1−at . These curves
(except 0 ≡ 0) are de�ned on in�nite segments: t ∈ (−∞; 1=a) for a > 0 and t = (1=a;+∞) for a < 0. So, there
is no " > 0 such that all a are de�ned on (−"; "). For any segment (p; q) ⊂ R, though, there exists such " that a
for all a ∈ (p; q) are de�ned on (−"; ") (this is a particular case of Theorem 1).

2. Commutator of vector �elds.

Theorem 3. Let A;B : X → X be derivations of an associative commutative algebra X. Then the commutator
C def= [A;B] def= A ◦B −B ◦A is also a derivation (◦ meaning composition of maps).

Proof. The map C is apparently linear; take now f; g ∈ X, so C(fg) = A(B(fg))−B(A(fg)) = A(fB(g)+B(f)g)−
B(fA(g)+A(f)g) = A(f)B(g)+fA(B(g))+A(B(f))g+B(f)A(g)−B(f)A(g)−f(B(A(g))−B(A(f))g−A(f)B(g) =
fC(g) + C(f)g. ¤

Corollary 1. A commutator of two vector �elds on a manifold M is a vector �eld.

Here vector �elds are considered as derivations of the algebra C∞(M) of smooth functions on M . In coordinates
x = (x1; : : : ; xn) if A = ∑n

i=1 ai(x) @
@xi and B = ∑n

i=1 bi(x) @
@xi then for any function f ∈ C∞(M) one has

[A;B](f) = A(
n∑

i=1
bi(x) @f@xi

)−B(
n∑

i=1
ai(x) @f@xi

) =
n∑

i;j=1
aj(x)@bi(x)

@xj
@f
@xi

−
n∑

i;j=1
bj(x)@ai(x)

@xj
@f
@xi

+ terms containing @2f
@xi@xj

that have to cancel by Corollary 1:

So, in coordinates [A;B] = ∑n
i=1

(∑n
j=1 aj(x)@bi(x)

@xj − bj(x)@ai(x)
@xj

)
@
@xi .

We are going now to give a geometric description of the commutator of vector �elds. Take a point a ∈ M and
let a : (−"; ") → M be an phase curve of the �eld A with a(0) = a; take Pt def= a(t) for any t ∈ (−"; "). Let
�Pt : (−"; ") →M be an phase curve of the vector �eld B with �Pt(0) = Pt; take Qt;s def= �Pt(s) for any s ∈ (−"; ").
Then let Qt;s : (−"; ") → M be an phase curve of A with Qt;s(0) = Qt;s; take Rt;s def= Qt;s(−t) (the same t
as before!). Finally, let �Rt;s : (−"; ") → M be an phase curve of the vector �eld B with �Rt;s(0) = Rt;s; take
U(t; s) def= �Rt;s(−s).

Now U : (−"; ")2 → M is a smooth map; by uniqueness of an phase curve one has U(t; 0) = U(0; s) = a for all
t; s ∈ (−"; "). Fix s ∈ (−"; "); then the formula �s(t) def= U(t; s) de�nes a smooth curve �s : (−"; ") → M with
�s(0) = a. The equivalence class of the curve �s at a is a vector `(s) ∈ TaM ; so ` : (−"; ") → TaM is a smooth
map.

Theorem 4. `′(0) = [A;B](a).

Proof. To compute `′(0) it is enough to operate with `(s) for s ∈ (−"; ") with " > 0 arbitrarily small; to de�ne
such `(s) one has to know U(t; s) for t; s ∈ (−"; "). So, the statement has local nature, and it is enough to prove it
for M = Rn and a = 0.

Consider the Taylor's formula for the map U : U(t; s) = u00+u10t+u01s+u11ts+o(t)+o(s), t; s→ 0 (pay attention
that the last two terms depend on both t and s!). Since U(t; 0) = U(0; s) = 0, one has u00 = u10 = u01 = 0, and the
last two terms are divisible by ts. Thus the curve �s(t) = u11ts+ so(t) + to(s), hence `(s) = �′s(0) = u11s+ o(s),
and `′(0) = u11. So, to prove the theorem it su�ces to compute u11.

Remember that A(x) = (a1(x); : : : ; an(x)) and B(x) = (b1(x); : : : ; bn(x)). So, Pt = (a1(0)t; : : : ; an(0)t) + o(t).
The term o(t) cannot contribute to the term u11ts in the formula for U(t; s) (explain why!), so we will write simply



Pt = (a1(0)t; : : : ; an(0)t) + : : : , and will be using : : : to denote all such \uninteresting" terms. Now
Qt;s = Pt + (b1(Pt); : : : ; bn(Pt))s+ : : :

= (a1(0)t+ b1(0)s+ d
d� b1(P� )

∣∣∣∣
�=0

ts+ : : : ; : : : ; an(0)t+ bn(0)s+ d
d� bn(P� )

∣∣∣∣
�=0

ts+ : : : )

= (a1(0)t+ b1(0)s+ ts
∑

j=1
aj(0) @b1@xj

(0) + : : : ; : : : ; an(0)t+ bn(0)s+ ts
∑

j=1
aj(0)@bn@xj

(0) + : : : );

Rt;s = Qt;s − (a1(Qt;s); : : : ; an(Qt;s)t+ : : :

= Qt;s − (a1(0)t; : : : ; an(0)t)− (
n∑

j=1
bj(0)@a1

@xj
(0)ts+ : : : ; : : : ;

n∑

j=1
bj(0)@an@xj

(0) + : : : )

= (b1(0)s; : : : ; bn(0)s) + ts(
n∑

j=1

(
aj(0) @b1@xj

(0)− bj(0)@a1
@xj

(0)
)
; : : : ;

n∑

j=1

(
aj(0)@bn@xj

(0)− bj(0)@an@xj
(0)

)
) + : : : ;

U(t; s) = Rt;s − s(b1(Rt;s); : : : ; bn(Rt;s)) + · · · = Rt;s − s(b1(0); : : : ; bn(0)) + : : :

= ts(
n∑

j=1

(
aj(0) @b1@xj

(0)− bj(0)@a1
@xj

(0)
)
; : : : ;

n∑

j=1

(
aj(0)@bn@xj

(0)− bj(0)@an@xj
(0)

)
) + : : : ;

so the theorem is proved. ¤
Example 4. A commutator of the vector �elds Z = x @

@x + y @
@y and W = x @

@y − y @
@x on R2 is 0. The corresponding

phase ows are 	((x; y); t) = (xet; yet) and 	((x; y); s) = (x cos s+y sin s;−x sin s+y cos s) according to Examples
1 and 4. The ows � and 	 commute: �(	((x; y); s); t) = et(x cos s+ y sin s;−x sin s+ y cos s) = 	(�((x; y); t); s).
Using the notation from the theorem, the map U(t; s) ≡ (x; y) (a constant map), so `(s) ≡ 0, con�rming the
theorem.


