HSE, FALL 2016 FOUNDATIONS OF DIFFERENTIAL GEOMETRY

LECTURE 4

ABSTRACT. Points and tangent vectors of a manifold via algebra of the smooth functions.

From now on we will consider only manifolds M having a countable (or finite) pre-atlas {(Uy, Vi, zk)}, k =
1,2,....

The associative commutative algebra C'°°(M) consists of smooth maps (functions) f : M — R; addition and
multiplication is performed pointwise. Supply C°°(M) with the compact-open C*-topology such that f, — f in
this topology would mean uniform convergence f, = f on any compact K C M together with all partial derivatives
(of any order) of all coordinate representations of f. An accurate definition of the topology is left as an exercise.

Let {U, | o € 2} be a covering of the manifold M by open subsets: |J,co Ua = M. For a function ¢ : M — R

the set supp ¢ def {b€ M | p(b) # 0} is called a support of . We say that functions g, € C*°(M), a € A, form a
partition of unity subordinate to the cover {U,} if they have the following properties:

(1) 9a(a) >0 for all a € M.
(2) supp(0a) C U, for every a € .
(3) For every a € M there exists an open set U 3 a such that the set of all a € 2 such that U Nsupp oo # &
is finite.
4) >, 0a =1
Note that by Property 3 the sum in the left-hand side of Property 4 is finite for any point @ € M (though for
different points it may contain different number of terms, which even need not be bounded). Also, there holds

Corollary 1 (of Property 3). Let {0, | & € 2} be a partition of unity, and K C M be a compact. Then the set of
a € A such that supp oo N K # O is finite.

Proof. Suppose the opposite: let aq,as,--- € A be such that supp g, N K # J; take a point a; in the latter inter-
section. The set {aj,az,...} C K has an accumulation point a € K. By Property 3 there exists a neighbourhood
U > a that intersects only finitely many sets supp g,. On the other side, since a is an accumulation point, U
contains infinitely many a; € supp g,;. A contradiction. O

The following theorem asserts that the set C°°(M) is sufficiently large for any manifold A:

Theorem 1 (partition of unity). Let manifold M have a countable pre-atlas, and {Uy,} be an open cover of M.
Then there exists a partition of unity subordinate to the cover.

For proof of this theorem see Exercise Set 4.

Ezample 1. Let a,b € M, a # b. Consider a cover M = U, UU;, where U, = M \ {a}, Uy = M \ {b}, and let g,, 0p
be a subordinate partition of unity. Then g,(a) = 0, g5(b) = 0, and therefore g,(b) = 1 — g5(b) = 1. So, different
points of a manifold are “independent” as zeros of smooth functions: ¢(a) = 0 never implies g(b) = 0.

Theorem 2. Let M be a smooth manifold and a € M. The set J, i {f € C=(M) | f(a) = 0} is a closed
mazimal ideal of the topological algebra C*°(M). Every closed mazimal ideal in C*°(M) is J, for some a € M.

To prove the theorem we will need two lemmas
Lemma 1. There exists a sequence of compacts K1 C Ky C --- C M such that |J, Ky = M.
Proof of this lemma is an exercise, see Exercise Set 4. (Actually, it is necessary to prove Theorem 1, too.)

Lemma 2. Let ® C C*°(M) be a subset such that its elements have no common zeros: Ya € M3p € ® : p(a) # 0.
If & C I where I C C*°(M) is a closed ideal then I = C°°(M). If the set ® is finite then the requirement for I to
be closed may be omitted.

Proof. Consider the sets Qy = {b € M | f(b) # 0} for all f € ®; since f € ® have no common zeros, the sets
form an open cover of M. Let gy be a partition of unity subordinate to the cover. The function R = Zfej orf?
is defined (the sum is finite in any point by Property 3).

By Lemma 1 and Corollary 1 for any s there is a finite subset ®; C ® such that QQ|KS =0 for a ¢ ®;. Therefore

R is a limit point (in the compact-open topology) of the set {Rg def 2 few o/ f? | ¥ C @ is finite}. Apparently
Ry € I because [ is an ideal containing ¥ C &, and therefore R € I because [ is closed; if ® is itself finite then
R € I without closedness. The function R is nowhere equal to zero (because {17} is a cover of M). Therefore
1=R/R € J, that is, J is a trivial ideal. O
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Proof of Theorem 2. [J, is obviously an ideal; it is maximal by Example 1 and Lemma 2. If f,, — f and f, € J,
then f,(a) — f(a) as n — oo (the one-point set {a} is compact), so f(a) = 0 and J, is closed.

Conversely, let J C C*°(M) be a maximal ideal and a closed set, By Lemma 2 there is a point a € M which is
a common zero of all f € J. This means J C J,, and therefore J = J, because J is maximal. O

For any f € J, the derivative f/(a) is a linear map T,M — ToR = R, i.e. an element of the conjugate space
T*M.
Theorem 3. f'(a) =0 if and only if f € J2.
Proof. Let f € J2, ie. f = Zfil gih; where ¢1,...,9n8,R1,...,hny € Jo. Then f'(a) = Zf\il(gi(a)h;(a) +
gi(a)hi(a)) = 0.

To prove the converse statement we need the following

Lemma 3 (Hadamard). Let f : R™ — R be a smooth function such that f(0) = 0 and f'(0) = 0. Then there exists
a smooth map A : R™ — Symm(R") to the set of symmetric matrices n x n such that f(z) = (A(z)z,z) for all
x € R", and A(0 ): £17(0).

Proof. One has f(z fo dtf tz) dt (by Newton—Leibnitz) fo (f'(tz),z) dt (by the chain rule) fol (fot 4 f(sx)ds,z) dt
(Newton Lelbnltz [0 (fo f"(sz)z ds,z) dt (chain rule) = (A(m) ) where A(z Jo Jo f"(sx) dsdt. Appar-
ently, 4(0) = f"(0 fo fo dsdt = % f”(0). By the symmetry of mixed derivative the matrlx A(z) is symmetric. O

Let f(a) =0 and f'(a) = 0. Consider a system of coordinates (U,V,z) such that a € U and z(a) = 0; take

= foz ! :V — R, so that ¢(0) = 0 and ¢/(0) = 0. By the Hadamard’s lemma ¢(z) = (A(x)x,z) =
doi e @ij(@)wary = 300 wi(w)xy, where wi(z) = 377 aij(x)z;. So, p € T C C=(V).

Take now £ > 0 such that B(0,2¢) C V (a ball or radius 2¢ centered at 0), and denote by A : V' — R a smooth
function equal to 1 in the ball B(0,¢) and equal to 0 outside B(0, 2¢). Define ¢ def WA, [; = u;h m v; = x; ). Then
p= va 1 Vi € J2 On the other side, the function A Loz U — R can be extended by zero to the whole of

M keeping it smooth; one can do the same to the functions gl = NL ox, hy; def v;ox and f = cp ozx.
Now f =N gihi € J2. On the other hand f — f = f(1—A?) € J2 (because A(a) = 1); therefore, f € J2. [

Corollary 2. J,/J2=T:M.

Proof. By Theorem 3 the quotient J,/J2 maps injectively to 7M. Let (x1,...,2,) be coordinates in a chart

U 3 a, and let A be a function defined in the proof of Theorem 3. Then the functions y;(b) def AD)(zi(m) — x4(a))
take zero values outside some neighbourhood of the point a. Therefore, they can be smoothly extended to the whole
of M by zero. Obviously, y;(a) = 0 (that is, y; € J,), and (y;(a), %(a» = 1. Tt implies the linear independence
of the functionals y}(a) : T,M — R, i =1,...,n. So, the dimension of the image of 7,/J2 under the map to T M
is not less than n = dim 7 M — hence the map is surjective. U

So, a vector v € T,M = (J,/J?)* can be interpreted as a linear functional v : J, — R such that J2 C Kerw;
extend it to the functional v : C*°(M) — R by setting v(1) .
Theorem 4. The functional v : C*°(M) — R so obtained satisfies the Leibnitz rule: v(fg)(a) = f(a)v(g)+g(a)v(f)
for all f,g € C°(M). Conversely, if v: C®(M) — R satisfies the Leibnitz rule then it is an element of T, M.

Proof. Suppose v € T, M. Then v(fg) = v(fg + f(a)g(a)) because v(1) = 0. Since f — f(a),g — g(a) € J,, one
has (f — f(a))(g — g(a)) € J7, hence 0 = v((f — f(a))(g — 9(a))) = v(fg + f(a)g(a)) — f(a)v(g) — g(a)v(f), so v
satisfies the Leibnitz rule.
Conversely, let v satisfy the Leibnitz rule. Then v(1) = v(1?) = 1-v(1) + 1-v(1) = 2v(1), so v(1) = 0. If
f,9 € Ju then v(fg) = f(a)v(g) + g(a)v(f) =0, so J? C Kerv by linearity. Thus, v € (J,/J2)* = T, M. O
Let now Z be a smooth vector field on M. Then for any f € C°°(M) one can define a function Zf € C>*(M)
setting (Zf)(a) ¥ Z(a)(f) where Z(a) € T, M.
Theorem 5. The linear operator Z : C*(M) — C™(M) so defined is a derivation of the algebra C*°(M):
Z(fg) = fZ(g)+ gZ(f). Conversely, every derivation of the algebra C*°(M) is a smooth vector field.
Proof. The first statement follows from Theorem 4. Conversely, let Z : C*°(M) — C*>°(M) be a derivation. For
any point @ € M define a linear map 7, : J, — R by Z,(f) = def Z(f)(a). By the second statement of Theorem 4

one has Z, € T,M. If a € U where (U,V, z) is a coordinate system then Z, def o 1pi(a)a%i(a).

To complete the proof it is necessary to show that the functions p; are smooth. Take a function A € C*(M)
like in the proof of Theorem 3 (A = 1 in the vicinity of the point a and A = 0 outside the chart U). Consider
the functions ¢;(b) € A(b)z;(b) where b € U, and take @;(b) = 0 for b ¢ U; apparently, ¢, € C*°(M) and
Z(p;)(b) = pi(b) for b€ U. But Z is a map C*°(M) — C*°(M), so the function p; is smooth. O



