
HSE, FALL 2016 FOUNDATIONS OF DIFFERENTIAL GEOMETRY

LECTURE 4

Abstract. Points and tangent vectors of a manifold via algebra of the smooth functions.

From now on we will consider only manifolds M having a countable (or �nite) pre-atlas {(Uk; Vk; xk)}, k =
1; 2; : : : .

The associative commutative algebra C∞(M) consists of smooth maps (functions) f : M → R; addition and
multiplication is performed pointwise. Supply C∞(M) with the compact-open C∞-topology such that fn → f in
this topology would mean uniform convergence fn ⇒ f on any compact K ⊂M together with all partial derivatives
(of any order) of all coordinate representations of f . An accurate de�nition of the topology is left as an exercise.

Let {U� | � ∈ A} be a covering of the manifold M by open subsets: ⋃
�∈A U� = M . For a function ' : M → R

the set supp' def= {b ∈M | '(b) 6= 0} is called a support of '. We say that functions %� ∈ C∞(M), � ∈ A, form a
partition of unity subordinate to the cover {U�} if they have the following properties:

(1) %�(a) ≥ 0 for all a ∈M .
(2) supp(%�) ⊂ U� for every � ∈ A.
(3) For every a ∈M there exists an open set U 3 a such that the set of all � ∈ A such that U ∩ supp %� 6= ∅

is �nite.
(4) ∑

� %� ≡ 1.
Note that by Property 3 the sum in the left-hand side of Property 4 is �nite for any point a ∈ M (though for

di�erent points it may contain di�erent number of terms, which even need not be bounded). Also, there holds
Corollary 1 (of Property 3). Let {%� | � ∈ A} be a partition of unity, and K ⊂M be a compact. Then the set of
� ∈ A such that supp %� ∩K 6= ∅ is �nite.
Proof. Suppose the opposite: let �1; �2; · · · ∈ A be such that supp %�i ∩K 6= ∅; take a point ai in the latter inter-
section. The set {a1; a2; : : : } ⊂ K has an accumulation point a ∈ K. By Property 3 there exists a neighbourhood
U 3 a that intersects only �nitely many sets supp %�. On the other side, since a is an accumulation point, U
contains in�nitely many ai ∈ supp %�i . A contradiction. ¤

The following theorem asserts that the set C∞(M) is su�ciently large for any manifold M :
Theorem 1 (partition of unity). Let manifold M have a countable pre-atlas, and {U�} be an open cover of M .
Then there exists a partition of unity subordinate to the cover.

For proof of this theorem see Exercise Set 4.
Example 1. Let a; b ∈M , a 6= b. Consider a cover M = Ua ∪Ub where Ua = M \ {a}, Ub = M \ {b}, and let %a; %b
be a subordinate partition of unity. Then %a(a) = 0, %b(b) = 0, and therefore %a(b) = 1 − %b(b) = 1. So, di�erent
points of a manifold are \independent" as zeros of smooth functions: %(a) = 0 never implies %(b) = 0.

Theorem 2. Let M be a smooth manifold and a ∈ M . The set Ja def= {f ∈ C∞(M) | f(a) = 0} is a closed
maximal ideal of the topological algebra C∞(M). Every closed maximal ideal in C∞(M) is Ja for some a ∈M .

To prove the theorem we will need two lemmas
Lemma 1. There exists a sequence of compacts K1 ⊂ K2 ⊂ · · · ⊂M such that ⋃

sKs = M .
Proof of this lemma is an exercise, see Exercise Set 4. (Actually, it is necessary to prove Theorem 1, too.)

Lemma 2. Let � ⊂ C∞(M) be a subset such that its elements have no common zeros: ∀a ∈M∃' ∈ � : '(a) 6= 0.
If � ⊂ I where I ⊂ C∞(M) is a closed ideal then I = C∞(M). If the set � is �nite then the requirement for I to
be closed may be omitted.
Proof. Consider the sets 
f = {b ∈ M | f(b) 6= 0} for all f ∈ �; since f ∈ � have no common zeros, the sets 
f
form an open cover of M . Let %f be a partition of unity subordinate to the cover. The function R = ∑

f∈J %ff2

is de�ned (the sum is �nite in any point by Property 3).
By Lemma 1 and Corollary 1 for any s there is a �nite subset �s ⊂ � such that %�|Ks = 0 for � =∈ �s. Therefore

R is a limit point (in the compact-open topology) of the set {R	
def= ∑

f∈	 %ff2 | 	 ⊂ � is �nite}. Apparently
R	 ∈ I because I is an ideal containing 	 ⊂ �, and therefore R ∈ I because I is closed; if � is itself �nite then
R ∈ I without closedness. The function R is nowhere equal to zero (because {
f} is a cover of M). Therefore
1 = R=R ∈ J , that is, J is a trivial ideal. ¤
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Proof of Theorem 2. Ja is obviously an ideal; it is maximal by Example 1 and Lemma 2. If fn → f and fn ∈ Ja
then fn(a) → f(a) as n→∞ (the one-point set {a} is compact), so f(a) = 0 and Ja is closed.

Conversely, let J ⊂ C∞(M) be a maximal ideal and a closed set, By Lemma 2 there is a point a ∈M which is
a common zero of all f ∈ J . This means J ⊂ Ja, and therefore J = Ja because J is maximal. ¤

For any f ∈ Ja the derivative f ′(a) is a linear map TaM → T0R = R, i.e. an element of the conjugate space
T ∗aM .
Theorem 3. f ′(a) = 0 if and only if f ∈ J 2

a .
Proof. Let f ∈ J 2

a , i.e. f = ∑N
i=1 gihi where g1; : : : ; gN ; h1; : : : ; hN ∈ Ja. Then f ′(a) = ∑N

i=1(gi(a)h′i(a) +
g′i(a)hi(a)) = 0.

To prove the converse statement we need the following
Lemma 3 (Hadamard). Let f : Rn → R be a smooth function such that f(0) = 0 and f ′(0) = 0. Then there exists
a smooth map A : Rn → Symm(Rn) to the set of symmetric matrices n × n such that f(x) =

(
A(x)x; x

)
for all

x ∈ Rn, and A(0) = 1
2f ′′(0).

Proof. One has f(x) =
∫ 1

0
d
dtf(tx) dt (by Newton{Leibnitz) =

∫ 1
0
(
f ′(tx); x

)
dt (by the chain rule) =

∫ 1
0
(∫ t

0
d
dsf ′(sx) ds; x

)
dt

(Newton{Leibnitz) =
∫ 1

0
(∫ t

0 f ′′(sx)x ds; x
)
dt (chain rule) =

(
A(x)x; x

)
where A(x) =

∫ 1
0

∫ t
0 f ′′(sx) dsdt. Appar-

ently, A(0) = f ′′(0)
∫ 1

0
∫ t

0 dsdt = 1
2f ′′(0). By the symmetry of mixed derivative the matrix A(x) is symmetric. ¤

Let f(a) = 0 and f ′(a) = 0. Consider a system of coordinates (U; V; x) such that a ∈ U and x(a) = 0; take
' = f ◦ x−1 : V → R, so that '(0) = 0 and '′(0) = 0. By the Hadamard's lemma '(x) = (A(x)x; x) =∑n
i;j=1 aij(x)xixj = ∑n

i=1 ui(x)xi, where ui(x) = ∑n
j=1 aij(x)xj . So, ' ∈ J 2

0 ⊂ C∞(V ).
Take now " > 0 such that B(0; 2") ⊂ V (a ball or radius 2" centered at 0), and denote by � : V → R a smooth

function equal to 1 in the ball B(0; ") and equal to 0 outside B(0; 2"). De�ne '̃ def= '�2, �̃i = ui� É �̃i = xi�. Then
'̃ = ∑N

i=1 �̃i�̃i ∈ J2
q . On the other side, the function � def= � ◦ x : U → R can be extended by zero to the whole of

M keeping it smooth; one can do the same to the functions gi def= �i ◦ x, hi def= �i ◦ x and f̃ def= '̃ ◦ x.
Now f̃ = ∑N

i=1 gihi ∈ J2
a . On the other hand f − f̃ = f(1−�2) ∈ J2

a (because �(a) = 1); therefore, f ∈ J2
a . ¤

Corollary 2. Ja=J 2
a = T ∗aM .

Proof. By Theorem 3 the quotient Ja=J 2
a maps injectively to T ∗aM . Let (x1; : : : ; xn) be coordinates in a chart

U 3 a, and let � be a function de�ned in the proof of Theorem 3. Then the functions yi(b) def= �(b)(xi(m)− xi(a))
take zero values outside some neighbourhood of the point a. Therefore, they can be smoothly extended to the whole
of M by zero. Obviously, yi(a) = 0 (that is, yi ∈ Ja), and 〈y′i(a); @

@xi (a)〉 = 1. It implies the linear independence
of the functionals y′i(a) : TaM → R, i = 1; : : : ; n. So, the dimension of the image of Ja=J 2

a under the map to T ∗aM
is not less than n = dimT ∗aM | hence the map is surjective. ¤

So, a vector v ∈ TaM = (Ja=J 2
a )∗ can be interpreted as a linear functional v : Ja → R such that J 2

a ⊂ Ker v;
extend it to the functional v : C∞(M) → R by setting v(1) def= 0.
Theorem 4. The functional v : C∞(M) → R so obtained satis�es the Leibnitz rule: v(fg)(a) = f(a)v(g)+g(a)v(f)
for all f; g ∈ C∞(M). Conversely, if v : C∞(M) → R satis�es the Leibnitz rule then it is an element of TaM .
Proof. Suppose v ∈ TaM . Then v(fg) = v(fg + f(a)g(a)) because v(1) = 0. Since f − f(a); g − g(a) ∈ Ja, one
has (f − f(a))(g − g(a)) ∈ J 2

a , hence 0 = v((f − f(a))(g − g(a))) = v(fg + f(a)g(a))− f(a)v(g)− g(a)v(f), so v
satis�es the Leibnitz rule.

Conversely, let v satisfy the Leibnitz rule. Then v(1) = v(12) = 1 · v(1) + 1 · v(1) = 2v(1), so v(1) = 0. If
f; g ∈ Ja then v(fg) = f(a)v(g) + g(a)v(f) = 0, so J 2

a ⊂ Ker v by linearity. Thus, v ∈ (Ja=J 2
a )∗ = TaM . ¤

Let now Z be a smooth vector �eld on M . Then for any f ∈ C∞(M) one can de�ne a function Zf ∈ C∞(M)
setting (Zf)(a) def= Z(a)(f) where Z(a) ∈ TaM .
Theorem 5. The linear operator Z : C∞(M) → C∞(M) so de�ned is a derivation of the algebra C∞(M):
Z(fg) = fZ(g) + gZ(f). Conversely, every derivation of the algebra C∞(M) is a smooth vector �eld.
Proof. The �rst statement follows from Theorem 4. Conversely, let Z : C∞(M) → C∞(M) be a derivation. For
any point a ∈ M de�ne a linear map Za : Ja → R by Za(f) def= Z(f)(a). By the second statement of Theorem 4
one has Za ∈ TaM . If a ∈ U where (U; V; x) is a coordinate system then Za def= ∑n

i=1 pi(a) @
@xi (a).

To complete the proof it is necessary to show that the functions pi are smooth. Take a function � ∈ C∞(M)
like in the proof of Theorem 3 (� ≡ 1 in the vicinity of the point a and � ≡ 0 outside the chart U). Consider
the functions 'i(b) def= �(b)xi(b) where b ∈ U , and take 'i(b) = 0 for b =∈ U ; apparently, 'i ∈ C∞(M) and
Z('i)(b) = pi(b) for b ∈ U . But Z is a map C∞(M) → C∞(M), so the function pi is smooth. ¤


