LECTURE 2

ABSTRACT. Tangent bundle of a manifold. Submanifolds and the implicit function theorem.

1. Definition of the tangent bundle. Let M be an n-dimensional manifold, and $a \in M$. Take a coordinate system (U, v, x) such that $a \in U$. Let $\gamma : \mathbb{R} \to M$ be a smooth map with $\gamma(0) = a$; we call such maps curves. Two curves γ_1 and γ_2 are called equivalent (at a) if $x(\gamma_1(t)) - x(\gamma_2(t)) = o(t)$ as $t \to 0$; notation: $\gamma_1 \sim_a \gamma_2$.

Lemma 1.

- **nma 1.** (1) $\gamma_1 \sim_a \gamma_2$ if and only if $\frac{d}{dt}x(\gamma_1(t))\Big|_{t=0} = \frac{d}{dt}x(\gamma_2(t))\Big|_{t=0}$. (2) The notion of equivalence of curves does not depend on the choice of the coordinate system (U, V, x).
- (3) \sim_a is an equivalence relation on the set of smooth maps $\gamma : \mathbb{R} \to M$ with $\gamma(0) = a$.

Proof of the lemma is an easy exercise.

The set of all curves $\gamma : \mathbb{R} \to M$ with $\gamma(0) = a$ is thus split into equivalence classes called *tangent vectors* to M at the point a; the set of tangent vectors is called the tangent space to M at a and is denoted $T_a M$. The union of all T_aM , $a \in M$, is called the *tangent bundle* of M and is denoted TM.

The set TM possesses a structure of a 2n-dimensional manifold defined as follows: let $A \stackrel{\text{def}}{=} \{(U_{\alpha}, V_{\alpha}, x_{\alpha})\}$ be an atlas in M; take $\mathcal{U}_{\alpha} \stackrel{\text{def}}{=} \bigcup_{a \in U_{\alpha}} T_a M$ and $\mathcal{V}_{\alpha} = V_{\alpha} \times \mathbb{R}^n \subset \mathbb{R}^{2n}$. Let $v \in T_a M$ be the equivalence class of a curve γ ; then define $y_{\alpha}(v) \stackrel{\text{def}}{=} (x_{\alpha}(a), \frac{d}{dt}x(\gamma(t))|_{t=0}) \in \mathcal{V}_{\alpha}$. By Property 1 from Lemma 1 the value $y_{\alpha}(v)$ does not depend on the choice of $\gamma \in v$.

Theorem 1. The set $\{(\mathcal{U}_{\alpha}, \mathcal{V}_{\alpha}, y_{\alpha})\}$ is an atlas on TM denoted \mathcal{T}_{A} . If A and B are equivalent atlases on M then \mathcal{T}_A and \mathcal{T}_B are equivalent.

Proof. Prove first that $\bigcup_{\alpha} \mathcal{U}_{\alpha} = TM$. By Lemma 1 the map $y_{\alpha} : \mathcal{U}_{\alpha} \to \mathcal{V}_{\alpha}$ is an injection. Prove it is a surjection, that is, for any $q \in \mathbb{R}^n$ there exists a curve $\gamma : \mathbb{R} \to M$ such that $\gamma(0) = a$ and $\frac{d}{dt}x(\gamma(t))\big|_{t=0} = q$. If q = 0 then it is enough to take $\gamma(t) \equiv a$. If $q \neq 0$, let $\ell = \{x(a) + qs \mid s \in \mathbb{R}\} \subset \mathbb{R}^n$ be the straight line through x(a) in the direction of q. The open set $V_{\alpha} \ni x(a)$ contains a ball $B_r(x(a))$; now take a smooth function $\varphi : \mathbb{R} \to \mathbb{R}$ such that $\varphi(0) = 0, \ \varphi'(0) = 1 \text{ and } |\varphi(t)| < r/|q| \text{ for all } t.$ Then one can take $\gamma(t) \stackrel{\text{def}}{=} x^{-1}(x(a) + q\varphi(t)).$

Let $a \in U_{\alpha} \cap U_{\beta}$. Then for t close to 0 one has $\gamma(t) \in U_{\alpha} \cap U_{\beta}$, too, and therefore

$$y_{\beta}(v) = \left(\varphi_{\alpha\beta}(x_{\alpha}(a)), \frac{d}{dt}(\varphi_{\alpha\beta}(x_{\alpha}(\gamma(t)))\Big|_{t=0}\right) = \left(\varphi_{\alpha\beta}(x_{\alpha}(a)), \varphi_{\alpha\beta}'(x_{\alpha}(a)), \frac{d}{dt}x_{\alpha}(\gamma(t))\Big|_{t=0}\right)$$
$$= \Phi_{\alpha\beta}(y_{\alpha}(v)),$$

where $\Phi_{\alpha\beta}(b,q) \stackrel{\text{def}}{=} (\varphi_{\alpha\beta}(b), \varphi'_{\alpha\beta}(b)q)$; here $\varphi'_{\alpha\beta}(b)$ is the $n \times n$ -matrix such that its matrix elements are partial derivatives of the components of the vector $\varphi_{\alpha\beta}(b) \in \mathbb{R}^n$ by the components of the vector b. Apparently $\Phi_{\alpha\beta}$ is a smooth map.

The Hausdorff property of \mathcal{T}_A is achieved by the usual addition of coordinate subsystems (check!).

Apparently $\mathcal{T}_{A\cup B} = \mathcal{T}_A \cup \mathcal{T}_B$. So if $A \cup B$ is an atlas on M then $\mathcal{T}_A \cup \mathcal{T}_B$ is an atlas on TM.

So, one defined a smooth 2n-dimensional structure on TM that depends only on the smooth structure on M. The map $p: TM \to M$ that sends every vector $v \in T_a M$ to the point a is smooth: if x is the coordinate in a chart $U \ni a$ and y is the corresponding coordinate in the neighbourhood $\mathcal{U} \ni v$ then the map p in coordinates looks as a projection $p_{xy}(b,q) = b$. A smooth map $Z: M \to TM$ which is a right inverse to $p: p \circ Z = \mathrm{id}_M$ (in other words, $Z(a) \in T_a M$ for all $a \in M$) is called a *smooth vector field* on the manifold M.

2. Tangent space as a vector space. For any $a \in U_{\alpha} \subset M$ the map $y_{\alpha} : T_a M \to \mathbb{R}^n$ is one-to-one; also $y_{\beta} = \varphi'_{\alpha\beta}(x_{\alpha}(a)) \circ y_{\alpha}$ is a composition of y_{α} with a linear map $\mathbb{R}^n \to \mathbb{R}^n$. This means that $T_a M$ has a stucture of an *n*-dimensional vector space taken from \mathbb{R}^n : if $v_1, v_2 \in T_a M$ then $v_1 + v_2 \stackrel{\text{def}}{=} y_{\alpha}^{-1}(y_{\alpha}(v_1) + v_2)$ $y_{\alpha}(v_2)$). The vector $v_1 + v_2$ does not depend on the choice of the coordinate system α : $y_{\beta}^{-1}(y_{\beta}(v_1) + y_{\beta}(v_2)) =$ $y_{\alpha}^{-1}(\left(\varphi_{\alpha\beta}'(x_{\alpha}(a))\right)^{-1}(\varphi_{\alpha\beta}'(x_{\alpha}(a))(y_{\alpha}(v_{1})) + \varphi_{\alpha\beta}'(x_{\alpha}(a))(y_{\alpha}(v_{2})))) = y_{\alpha}^{-1}(y_{\alpha}(v_{1}) + y_{\alpha}(v_{2})) = v_{1} + v_{2}; \text{ the same for multiplication of } v \in T_{a}M \text{ by a scalar } t \in \mathbb{R}.$

Lemma 2. Let $a \in U$ where $(U, V, x = (x_1, \ldots, x_n))$ is a coordinate system. The equivalence classes of curves $\gamma_i(t) \stackrel{\text{def}}{=} x^{-1}(x_1(a), \dots, x_i(a) + t, \dots, x_n(a)), i = 1, \dots, n, \text{ form a basis in } T_a M.$

The lemma follows immediately from Statement 1 of Lemma 1: one has then $\frac{d}{dt}(x(\gamma_i(t)))\Big|_{t=0} = (0, \ldots, 1, \ldots, 0)$ (1 in the *i*-th position); such vectors form a basis in \mathbb{R}^n . The basis in T_aM so defined is usually denoted $\frac{\partial}{\partial x_1}(a), \ldots, \frac{\partial}{\partial x_n}(a)$; this notation will be explained later.

Example 1. Let $M = S^1 = \{(x, y) \stackrel{\text{def}}{=} u^2 + v^2 = 1\}$. Take an atlas $\{(U_1, (-\pi, \pi), x_1), (U_2, (-\pi, \pi), x_2)\}$ of two coordinate systems where $U_1 = S^1 \setminus \{(-1, 0)\}$ and $U_2 = S^1 \setminus \{(1, 0)\}$; $x_1(q) \in (-\pi, \pi)$ is the angle (counterclockwise) between the radius of q and the positive direction of the x axis, and $x_2(q) \in (-\pi, \pi)$ the angle (counterclockwise) between the radius of q and the negative direction of the x axis. The transition map is $\varphi_{12}(s) = s + \pi$ for $-\pi < s < 0$ and $\varphi_{12}(s) = s - \pi$ for $0 < s < \pi$. It is easy to see that the atlas is equivalent to the standard one. Let $\gamma_a(t) \in S^1$ be a point whose radius forms an angle $t \mod 2\pi$ with the radius of the point a. Then $y_1(\gamma_a) = (x_1(a), 1)$ and $y_2(\gamma_a) = (x_2(a), -1)$ for all a. Thus, the curve γ_a represents a nonzero element $v_a = \frac{\partial}{\partial x_1}(a) = \frac{\partial}{\partial x_2}(a) \in T_a M$; since $\dim T_a M = 1$, any other vector $v \in T_a M$ is equal to zv_a for some $z \in \mathbb{R}$. Thus a map sending v to the pair (a, z) is a diffeomorphism between TS^1 and $S^1 \times \mathbb{R}$.

3. Derivative of a smooth map. Let $f: M_1 \to M_2$ be a smooth map between two manifolds (possibly of different dimensions). Let $\gamma: \mathbb{R} \to M_1$ be a smooth map with $\gamma(0) = a \in M_1$ represent a vector $v \in T_a M_1$; then the smooth map $f \circ \gamma: \mathbb{R} \to M_2$ represents a vector $w \in T_{f(a)}M_2$.

Lemma 3. The vector w depends only on the vector v, not on a particular choice of the map γ representing v. The mapping $f'(a) : T_a M_1 \to T_{f(a)} M_2$ defined as $f'(a)v \stackrel{\text{def}}{=} w$ is linear. It satisfies the chain rule: if $h = g \circ f$ where $g : M_2 \to M_3$ is a smooth map then $h'(a) = g'(f(a)) \circ f'(a)$.

The mapping f'(a) is called, as the notation suggests, the derivative of the map f at the point a.

The main idea of the proof. Fix coordinate systems x_1 and x_2 in the neighbourhoods $U_1 \ni a$ and $U_2 \ni f(a)$ on M_1 and M_2 , respectively. Let the coordinate form of the map f is $f_{12} = x_2 \circ f \circ x_1^{-1} : V \to \mathbb{R}^n$ where $V \subset \mathbb{R}^n$ is an open set containing x(a). An easy calculation shows that the coordinate form $y_2 \circ f'(a) \circ y_1^{-1} : \mathbb{R}^n \to \mathbb{R}^n$ of the map f'(a) in the corresponding coordinates y_1 and y_2 on TM_1 and TM_2 is equal to $f'_{12}(x(a))$, that is, a linear map with the $n \times n$ -matrix made of partial derivatives of the components of $f_{12}(b)$ by the components of b.

4. Submanifolds and the implicit function theorem. A subset $N \subset M$ of an *m*-dimensional manifold M is called a submanifold of dimension $n \leq m$ if for any $a \in N$ there is a coordinate system $(U, V, x = (x_1, \ldots, x_m))$ in M with $a \in U$ such that $N \cap U = \{b \in U \mid x_{n+1}(b) = \cdots = x_m(b) = 0\}$. A submanifold has a naturally defined structure of a smooth *n*-dimensional manifold: the charts are $\tilde{U} = U \cap N$ where U are the charts mentioned above, and the coordinates in \tilde{U} are x_1, \ldots, x_n .

Theorem 2 (implicit function theorem for manifolds). Let $f : M \to K$ be a smooth map between manifolds of dimensions m and $k \leq m$, respectively. Let $c \in K$ be a regular value, that is, for any $x \in f^{-1}(c)$ the rank of the linear map $f'(x) : T_x M \to T_c K$ is equal to k. Then $f^{-1}(c)$ is a smooth submanifold of M of dimension m - k.

Proof. Let f(a) = c, and $U \ni a$, $W \ni c$ be charts in M and K, respectively. Coordinate maps identify them with open subsets in \mathbb{R}^m and \mathbb{R}^k ; we will omit these maps in formulas writing simply $U \subset \mathbb{R}^m$, $W \subset \mathbb{R}^k$. Without loss of generality take c = 0. By the implicit function theorem for \mathbb{R}^N there exists an open subset $V \subset \mathbb{R}^{m-k}$ and a smooth map $g: W \times V \to U$ such that f(g(w, v)) = w for all $w \in W$, $v \in V$. Now $g^{-1}: g(W \times V) \to W \times V$ is the required coordinate map; $g(W \times V) \subset U$ is a chart.

Example 2. Submanifolds of M of dimension m are open subsets $U \subset M$, and only they.

Example 3. A sphere $S = \{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid x_1^2 + \cdots + x_n^2 = 1\}$ is $f^{-1}(1)$ where $f : \mathbb{R}^n \to \mathbb{R}$ is given by $f(x) = x_1^2 + \cdots + x_n^2$. The derivative $f'(x) = 2x \neq 0$ for $x \in S$, so S is a submanifold of \mathbb{R}^n of dimension n-1.

Example 4. $N = \{(x, y) \in \mathbb{R}^2 \mid xy = 0\}$ is not a 1-dimensional submanifold of \mathbb{R}^2 , Indeed, let U be a chart containing (0, 0). By the implicit function theorem there exists an open ball $V \subset U$ such that the set $\{b \in V \mid x_2(b) = 0\}$ is an image of a smooth embedding $\gamma : \mathbb{R} \to \mathbb{R}^2$ (an embedded curve) and is therefore homeomorphic to the real line. An intersection of N with an open ball is not homeomorphic to a line (it splits into 4 components if a point (0, 0) is deleted, while a line splits in two).

The set $N = \{(x, y) \in \mathbb{R}^2 \mid xy = a\}$ for any $a \neq 0$ is a 1-submanifold, as follows from Theorem 2: f(x, y) = xy, $f'(x, y) = (y, x) \neq 0$ if $xy = a \neq 0$.

Example 5. A submanifold need not be a closed set (it may be even open) but should be locally closed: for any $a \in N$ there exists an open set $U \subset M$, $a \in U$, such that $N \cap U$ is closed in U (because it is defined by equations with continuous functions x_{n+1}, \ldots, x_m in the left-hand side). Let $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$ be a 2-dimensional torus; it has a naturally defined structure of a 2-dimensional manifold (provide details!). Take a number $\alpha \notin \mathbb{Q}$; the image of the line $\{(t, \alpha t) \in \mathbb{R}^2\}$ under the natural projection $\mathbb{R}^2 \to \mathbb{T}^2$ is homeomorphic to the line, and the projection restricted to the line is a smooth embedding. Nevertheless, the image of the projection is not locally closed (it is dense in \mathbb{T}^2), hence, it is not a 1-submanifold.