
HSE, FALL 2016 FOUNDATIONS OF DIFFERENTIAL GEOMETRY

LECTURE 2

Abstract. Tangent bundle of a manifold. Submanifolds and the implicit function theorem.

1. De�nition of the tangent bundle. Let M be an n-dimensional manifold, and a ∈ M . Take a coordinate
system (U; v; x) such that a ∈ U . Let  : R→M be a smooth map with (0) = a; we call such maps curves. Two
curves 1 and 2 are called equivalent (at a) if x(1(t))− x(2(t)) = o(t) as t→ 0; notation: 1 ∼a 2.
Lemma 1. (1) 1 ∼a 2 if and only if d

dtx(1(t))
∣∣
t=0 = d

dtx(2(t))
∣∣
t=0.

(2) The notion of equivalence of curves does not depend on the choice of the coordinate system (U; V; x).
(3) ∼a is an equivalence relation on the set of smooth maps  : R→M with (0) = a.

Proof of the lemma is an easy exercise.
The set of all curves  : R→M with (0) = a is thus split into equivalence classes called tangent vectors to M

at the point a; the set of tangent vectors is called the tangent space to M at a and is denoted TaM . The union of
all TaM , a ∈M , is called the tangent bundle of M and is denoted TM .

The set TM possesses a structure of a 2n-dimensional manifold de�ned as follows: let A def= {(U�; V�; x�)} be an
atlas in M ; take U� def= ⋃

a∈U� TaM and V� = V� × Rn ⊂ R2n. Let v ∈ TaM be the equivalence class of a curve ;
then de�ne y�(v) def= (x�(a); d

dtx((t))
∣∣
t=0) ∈ V�. By Property 1 from Lemma 1 the value y�(v) does not depend

on the choice of  ∈ v.
Theorem 1. The set {(U�;V�; y�)} is an atlas on TM denoted TA. If A and B are equivalent atlases on M then
TA and TB are equivalent.
Proof. Prove �rst that ⋃

� U� = TM . By Lemma 1 the map y� : U� → V� is an injection. Prove it is a surjection,
that is, for any q ∈ Rn there exists a curve  : R → M such that (0) = a and d

dtx((t))
∣∣
t=0 = q. If q = 0 then

it is enough to take (t) ≡ a. If q 6= 0, let ` = {x(a) + qs | s ∈ R} ⊂ Rn be the straight line through x(a) in the
direction of q. The open set V� 3 x(a) contains a ball Br(x(a)); now take a smooth function ' : R→ R such that
'(0) = 0, '′(0) = 1 and |'(t)| < r= |q| for all t. Then one can take (t) def= x−1(x(a) + q'(t)).

Let a ∈ U� ∩ U� . Then for t close to 0 one has (t) ∈ U� ∩ U� , too, and therefore

y�(v) =
(
'��(x�(a)); ddt ('��(x�((t)))

∣∣∣∣
t=0

)
=

(
'��(x�(a)); '′��(x�(a)) d

dtx�((t))
∣∣∣∣
t=0

)

= ���(y�(v));

where ���(b; q) def= ('��(b); '′��(b)q); here '′��(b) is the n × n-matrix such that its matrix elements are partial
derivatives of the components of the vector '��(b) ∈ Rn by the components of the vector b. Apparently ��� is a
smooth map.

The Hausdor� property of TA is achieved by the usual addition of coordinate subsystems (check!).
Apparently TA∪B = TA ∪ TB . So if A ∪B is an atlas on M then TA ∪ TB is an atlas on TM . ¤

So, one de�ned a smooth 2n-dimensional structure on TM that depends only on the smooth structure on M .
The map p : TM →M that sends every vector v ∈ TaM to the point a is smooth: if x is the coordinate in a chart
U 3 a and y is the corresponding coordinate in the neighbourhood U 3 v then the map p in coordinates looks as a
projection pxy(b; q) = b. A smooth map Z : M → TM which is a right inverse to p: p ◦ Z = idM (in other words,
Z(a) ∈ TaM for all a ∈M) is called a smooth vector �eld on the manifold M .
2. Tangent space as a vector space. For any a ∈ U� ⊂ M the map y� : TaM → Rn is one-to-one;
also y� = '′��(x�(a)) ◦ y� is a composition of y� with a linear map Rn → Rn. This means that TaM has
a stucture of an n-dimensional vector space taken from Rn: if v1; v2 ∈ TaM then v1 + v2

def= y−1
� (y�(v1) +

y�(v2)). The vector v1 + v2 does not depend on the choice of the coordinate system �: y−1
� (y�(v1) + y�(v2)) =

y−1
� (

(
'′��(x�(a))

)−1('′��(x�(a))(y�(v1)) + '′��(x�(a))(y�(v2)))) = y−1
� (y�(v1) + y�(v2)) = v1 + v2; the same for

multiplication of v ∈ TaM by a scalar t ∈ R.
Lemma 2. Let a ∈ U where (U; V; x = (x1; : : : ; xn)) is a coordinate system. The equivalence classes of curves
i(t)

def= x−1(x1(a); : : : ; xi(a) + t; : : : ; xn(a)), i = 1; : : : ; n, form a basis in TaM .
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The lemma follows immediately from Statement 1 of Lemma 1: one has then d
dt (x(i(t)))

∣∣
t=0 = (0; : : : ; 1; : : : ; 0)

(1 in the i-th position); such vectors form a basis in Rn. The basis in TaM so de�ned is usually denoted
@
@x1

(a); : : : ; @
@xn (a); this notation will be explained later.

Example 1. Let M = S1 = {(x; y) def= u2 + v2 = 1}. Take an atlas {(U1; (−�; �); x1); (U2; (−�; �); x2)} of two
coordinate systems where U1 = S1\{(−1; 0)} and U2 = S1\{(1; 0)}; x1(q) ∈ (−�; �) is the angle (counterclockwise)
between the radius of q and the positive direction of the x axis, and x2(q) ∈ (−�; �) the angle (counterclockwise)
between the radius of q and the negative direction of the x axis. The transition map is '12(s) = s+� for −� < s < 0
and '12(s) = s− � for 0 < s < �. It is easy to see that the atlas is equivalent to the standard one. Let a(t) ∈ S1

be a point whose radius forms an angle t mod 2� with the radius of the point a. Then y1(a) = (x1(a); 1) and
y2(a) = (x2(a);−1) for all a. Thus, the curve a represents a nonzero element va = @

@x1
(a) = @

@x2
(a) ∈ TaM ; since

dimTaM = 1, any other vector v ∈ TaM is equal to zva for some z ∈ R. Thus a map sending v to the pair (a; z)
is a di�eomorphism between TS1 and S1 × R.
3. Derivative of a smooth map. Let f : M1 → M2 be a smooth map between two manifolds (possibly of
di�erent dimensions). Let  : R → M1 be a smooth map with (0) = a ∈ M1 represent a vector v ∈ TaM1; then
the smooth map f ◦  : R→M2 represents a vector w ∈ Tf(a)M2.
Lemma 3. The vector w depends only on the vector v, not on a particular choice of the map  representing v.
The mapping f ′(a) : TaM1 → Tf(a)M2 de�ned as f ′(a)v def= w is linear. It satis�es the chain rule: if h = g ◦ f
where g : M2 →M3 is a smooth map then h′(a) = g′(f(a)) ◦ f ′(a).

The mapping f ′(a) is called, as the notation suggests, the derivative of the map f at the point a.
The main idea of the proof. Fix coordinate systems x1 and x2 in the neighbourhoods U1 3 a and U2 3 f(a) on M1
and M2, respectively. Let the coordinate form of the map f is f12 = x2 ◦ f ◦ x−1

1 : V → Rn where V ⊂ Rn is an
open set containing x(a). An easy calculation shows that the coordinate form y2 ◦ f ′(a) ◦ y−1

1 : Rn → Rn of the
map f ′(a) in the corresponding coordinates y1 and y2 on TM1 and TM2 is equal to f ′12(x(a)), that is, a linear map
with the n× n-matrix made of partial derivatives of the components of f12(b) by the components of b. ¤
4. Submanifolds and the implicit function theorem. A subset N ⊂ M of an m-dimensional manifold M is
called a submanifold of dimension n ≤ m if for any a ∈ N there is a coordinate system (U; V; x = (x1; : : : ; xm)) in
M with a ∈ U such that N ∩ U = {b ∈ U | xn+1(b) = · · · = xm(b) = 0}. A submanifold has a naturally de�ned
structure of a smooth n-dimensional manifold: the charts are ~U = U ∩N where U are the charts mentioned above,
and the coordinates in ~U are x1; : : : ; xn.
Theorem 2 (implicit function theorem for manifolds). Let f : M → K be a smooth map between manifolds of
dimensions m and k ≤ m, respectively. Let c ∈ K be a regular value, that is, for any x ∈ f−1(c) the rank of the
linear map f ′(x) : TxM → TcK is equal to k. Then f−1(c) is a smooth submanifold of M of dimension m− k.
Proof. Let f(a) = c, and U 3 a, W 3 c be charts in M and K, respectively. Coordinate maps identify them with
open subsets in Rm and Rk; we will omit these maps in formulas writing simply U ⊂ Rm, W ⊂ Rk. Without loss
of generality take c = 0. By the implicit function theorem for RN there exists an open subset V ⊂ Rm−k and a
smooth map g : W × V → U such that f(g(w; v)) = w for all w ∈ W , v ∈ V . Now g−1 : g(W × V ) → W × V is
the required coordinate map; g(W × V ) ⊂ U is a chart. ¤
Example 2. Submanifolds of M of dimension m are open subsets U ⊂M , and only they.
Example 3. A sphere S = {(x1; : : : ; xn) ∈ Rn | x2

1 + · · · + x2
n = 1} is f−1(1) where f : Rn → R is given by

f(x) = x2
1 + · · ·+ x2

n. The derivative f ′(x) = 2x 6= 0 for x ∈ S, so S is a submanifold of Rn of dimension n− 1.
Example 4. N = {(x; y) ∈ R2 | xy = 0} is not a 1-dimensional submanifold of R2, Indeed, let U be a chart containing
(0; 0). By the implicit function theorem there exists an open ball V ⊂ U such that the set {b ∈ V | x2(b) = 0} is
an image of a smooth embedding  : R→ R2 (an embedded curve) and is therefore homeomorphic to the real line.
An intersection of N with an open ball is not homeomorphic to a line (it splits into 4 components if a point (0; 0)
is deleted, while a line splits in two).

The set N = {(x; y) ∈ R2 | xy = a} for any a 6= 0 is a 1-submanifold, as follows from Theorem 2: f(x; y) = xy,
f ′(x; y) = (y; x) 6= 0 if xy = a 6= 0.
Example 5. A submanifold need not be a closed set (it may be even open) but should be locally closed: for any
a ∈ N there exists an open set U ⊂ M , a ∈ U , such that N ∩ U is closed in U (because it is de�ned by equations
with continuous functions xn+1; : : : ; xm in the left-hand side). Let T2 = R2=Z2 be a 2-dimensional torus; it has a
naturally de�ned structure of a 2-dimensional manifold (provide details!). Take a number � =∈ Q; the image of the
line {(t; �t) ∈ R2} under the natural projection R2 → T2 is homeomorphic to the line, and the projection restricted
to the line is a smooth embedding. Nevertheless, the image of the projection is not locally closed (it is dense in
T2), hence, it is not a 1-submanifold.
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