HSE, FALL 2016 FOUNDATIONS OF DIFFERENTIAL GEOMETRY

LECTURE 2

ABSTRACT. Tangent bundle of a manifold. Submanifolds and the implicit function theorem.

1. Definition of the tangent bundle. Let M be an n-dimensional manifold, and a € M. Take a coordinate
system (U,v,x) such that a € U. Let v : R — M be a smooth map with v(0) = a; we call such maps curves. Two
curves y; and 7, are called equivalent (at @) if z(71(¢)) — z(y2(t)) = o(t) as t — 0; notation: y; ~g 2.

Lemma 1. (1) 71 ~a 72 if and only if Sx(n(t)],_, = Hr(n®)],_,-
(2) The notion of equivalence of curves does not depend on the choice of the coordinate system (U,V, ).
(3) ~q is an equivalence relation on the set of smooth maps v: R — M with v(0) = a.

Proof of the lemma is an easy exercise.

The set of all curves v : R — M with v(0) = a is thus split into equivalence classes called tangent vectors to M
at the point a; the set of tangent vectors is called the tangent space to M at a and is denoted T, M. The union of
all T,M, a € M, is called the tangent bundle of M and is denoted T'M.

The set T'M possesses a structure of a 2n-dimensional manifold defined as follows: let A def {(Ua,Va,2a)} be an

atlas in M; take U, def U T,M and V, =V, x R® C R?". Let v € T, M be the equivalence class of a curve v;

then define y,(v) ef (za(a), %w('y(t))hzo) € V,. By Property 1 from Lemma 1 the value y,(v) does not depend
on the choice of v € v.

acU,

Theorem 1. The set {(Uy,Va,ya)} is an atlas on TM denoted Ty. If A and B are equivalent atlases on M then
T4 and Tp are equivalent.

Proof. Prove first that J, Uy, = TM. By Lemma 1 the map yo : Uy — Vq is an injection. Prove it is a surjection,
that is, for any ¢ € R™ there exists a curve v : R — M such that y(0) = a and %x(’y(t))!tzo =gq. If ¢ =0 then
it is enough to take y(t) = a. If ¢ # 0, let £ = {z(a) + g5 | s € R} C R™ be the straight line through z(a) in the
direction of g. The open set V,, 3 z(a) contains a ball B,(z(a)); now take a smooth function ¢ : R — R such that
»(0) =0, ¢'(0) =1 and |p(t)| < r/|g| for all ¢. Then one can take (¢) def zH(x(a) + qp(t)).
Let a € Uy NUp. Then for ¢ close to 0 one has y(t) € U, NUg, too, and therefore
d
) = (buaea(@). hs(aato) Gaatr)| )
t=0
= @u5(ya(v)),
where ®,5(b, q) o (¢as (D), ©l,5(b)q); here ¢ 5(b) is the n x n-matrix such that its matrix elements are partial
derivatives of the components of the vector ¢,5(b) € R” by the components of the vector b. Apparently ®,3 is a
smooth map.

The Hausdorff property of 74 is achieved by the usual addition of coordinate subsystems (check!).
Apparently Tyup = 74 U 7. Soif AU B is an atlas on M then 74 U 7p is an atlas on T M. O

d
ys(v) = (‘Paﬁ(wa(a)): 7 (Pas(za(7(1))) -

So, one defined a smooth 2n-dimensional structure on T'M that depends only on the smooth structure on M.
The map p: TM — M that sends every vector v € T, M to the point a is smooth: if z is the coordinate in a chart
U > a and y is the corresponding coordinate in the neighbourhood & > v then the map p in coordinates looks as a
projection pg,(b,q) = b. A smooth map Z : M — TM which is a right inverse to p: po Z =idy (in other words,
Z(a) € T,M for all a € M) is called a smooth vector field on the manifold M.

2. Tangent space as a vector space. For any a € U, C M the map y, : T, M — R" is one-to-one;
also yg = gp’aﬂ(xa(a)) 0 Y, is a composition of y, with a linear map R® — R"™ This means that T, M has

a stucture of an n-dimensional vector space taken from R™: if vi,vs € T,M then vy + vs def y;l(ya(vl) +
Ya(v2)). The vector vy + vy does not depend on the choice of the coordinate system a: ygl(yig (v1) +yg(v2)) =

_ -1 _
Yo ((¢hs(2a(a)))  (Phs(wal@)(Wa(v1)) + ©hs(2a(@)(Ya(v2)))) = ¥5' (Walv1) + ya(v2)) = v1 + vo; the same for
multiplication of v € T, M by a scalar t € R.
Lemma 2. Let a € U where (U,V,z = (21,...,%,)) is a coordinate system. The equivalence classes of curves

i (1) d:efa:’l(wl(a), coozi(a)+t . en(a)), i =1, . n, form a basis in T,M.
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The lemma follows immediately from Statement 1 of Lemma 1: one has then %(x(fyi(t))) ’t:O =(0,...,1,...,0)
(1 in the i-th position); such vectors form a basis in R™. The basis in T,M so defined is usually denoted

%(a), cee %(a); this notation will be explained later.

Ezample 1. Let M = S = {(z,y) Chu? 42 = 1}. Take an atlas {(Uy, (—w, ), 21), (Us, (—7,7),x2)} of two

coordinate systems where U; = S*\{(—1,0)} and Uz = S"\{(1,0)}; z1(g) € (—m, ) is the angle (counterclockwise)
between the radius of ¢ and the positive direction of the z axis, and z2(q) € (—7, 7) the angle (counterclockwise)
between the radius of ¢ and the negative direction of the z axis. The transition map is ¢12(s) = s+7w for -7 < s < 0
and p12(s) = s —m for 0 < s < 7. It is easy to see that the atlas is equivalent to the standard one. Let 7,(t) € S*
be a point whose radius forms an angle ¢ mod 27 with the radius of the point a. Then y;(v,) = (z1(a),1) and
y2(7a) = (z2(a), —1) for all a. Thus, the curve v, represents a nonzero element v, = %(a) = %(a) € T, M; since
dim T, M = 1, any other vector v € T, M is equal to zv, for some z € R. Thus a map sending v to the pair (a, 2)
is a diffeomorphism between T'S' and S! x R.

3. Derivative of a smooth map. Let f : M; — M, be a smooth map between two manifolds (possibly of
different dimensions). Let v : R — M; be a smooth map with v(0) = a € M; represent a vector v € T, M;; then
the smooth map f o~y :R — Ms represents a vector w € T'p,) Ma.

Lemma 3. The vector w depends only on the vector v, not on a particular choice of the map v representing v.
The mapping f'(a) : ToMy — Tpa)M2 defined as f'(a)v & w is linear. It satisfies the chain rule: if h = go f
where g : My — M3 is a smooth map then h'(a) = ¢'(f(a)) o f'(a).

The mapping f’(a) is called, as the notation suggests, the derivative of the map f at the point a.

The main idea of the proof. Fix coordinate systems z; and x5 in the neighbourhoods Uy 3 a and Us 3 f(a) on M,
and M, respectively. Let the coordinate form of the map f is fio = x50 fo 1;1_1 :V — R” where V C R™ is an
open set containing x(a). An easy calculation shows that the coordinate form g o f'(a) o y;* : R® — R™ of the
map f'(a) in the corresponding coordinates y; and y2 on TM; and T M, is equal to fi5(x(a)), that is, a linear map
with the n x n-matrix made of partial derivatives of the components of fi2(b) by the components of b. O

4. Submanifolds and the implicit function theorem. A subset N C M of an m-dimensional manifold M is
called a submanifold of dimension n < m if for any a € N there is a coordinate system (U, V,z = (21,...,%y)) in
M with a € U such that NNU ={be U | ,41(b) = -+ = z,,(b) = 0}. A submanifold has a naturally defined
structure of a smooth n-dimensional manifold: the charts are U = U NN where U are the charts mentioned above,
and the coordinates in U are @1, ...,Zn.

Theorem 2 (implicit function theorem for manifolds). Let f : M — K be a smooth map between manifolds of
dimensions m and k < m, respectively. Let c € K be a reqular value, that is, for any © € f~1(c) the rank of the
linear map f'(z) : TyM — T.K is equal to k. Then f~1(c) is a smooth submanifold of M of dimension m — k.

Proof. Let f(a) = ¢, and U 3 a, W 3 ¢ be charts in M and K, respectively. Coordinate maps identify them with
open subsets in R™ and R¥; we will omit these maps in formulas writing simply U C R™, W C R¥. Without loss
of generality take ¢ = 0. By the implicit function theorem for R there exists an open subset V' C R™* and a
smooth map g : W x V — U such that f(g(w,v)) =w forallw € W, v € V. Now g1 : g(W xV) - W x V is
the required coordinate map; g(W x V) C U is a chart. O

Ezample 2. Submanifolds of M of dimension m are open subsets U C M, and only they.

Example 3. A sphere S = {(z1,...,2,) € R | 23 + .-+ 22 = 1} is f7!(1) where f : R® — R is given by
f(x) =2} + -+ 22. The derivative f'(z) = 2z # 0 for x € S, so S is a submanifold of R™ of dimension n — 1.

Ezample 4. N = {(z,y) € R? | zy = 0} is not a 1-dimensional submanifold of R?, Indeed, let U be a chart containing
(0,0). By the implicit function theorem there exists an open ball V' C U such that the set {b € V | 22(b) = 0} is
an image of a smooth embedding v : R — R? (an embedded curve) and is therefore homeomorphic to the real line.
An intersection of N with an open ball is not homeomorphic to a line (it splits into 4 components if a point (0,0)
is deleted, while a line splits in two).

The set N = {(z,y) € R? | zy = a} for any a # 0 is a 1-submanifold, as follows from Theorem 2: f(z,y) = xy,
f(@y)=(y.2) Z0if zy =a # 0.
Ezample 5. A submanifold need not be a closed set (it may be even open) but should be locally closed: for any
a € N there exists an open set U C M, a € U, such that N NU is closed in U (because it is defined by equations
with continuous functions @, 11, ..., %, in the left-hand side). Let T? = R?/Z? be a 2-dimensional torus; it has a
naturally defined structure of a 2-dimensional manifold (provide details!). Take a number a ¢ Q; the image of the
line {(t,at) € R?} under the natural projection R? — T? is homeomorphic to the line, and the projection restricted
to the line is a smooth embedding. Nevertheless, the image of the projection is not locally closed (it is dense in
T?), hence, it is not a 1-submanifold.



