LECTURE 2

Abstract. Tangent bundle of a manifold. Submanifolds and the implicit function theorem.

1. Definition of the tangent bundle. Let M be an n-dimensional manifold, and $a \in M$. Take a coordinate system (U, v, x) such that $a \in U$. Let $\gamma: \mathbb{R} \rightarrow M$ be a smooth map with $\gamma(0)=a$; we call such maps curves. Two curves γ_{1} and γ_{2} are called equivalent (at a) if $x\left(\gamma_{1}(t)\right)-x\left(\gamma_{2}(t)\right)=o(t)$ as $t \rightarrow 0$; notation: $\gamma_{1} \sim_{a} \gamma_{2}$.

Lemma 1. (1) $\gamma_{1} \sim_{a} \gamma_{2}$ if and only if $\left.\frac{d}{d t} x\left(\gamma_{1}(t)\right)\right|_{t=0}=\left.\frac{d}{d t} x\left(\gamma_{2}(t)\right)\right|_{t=0}$.
(2) The notion of equivalence of curves does not depend on the choice of the coordinate system (U, V, x).
$(3) \sim_{a}$ is an equivalence relation on the set of smooth maps $\gamma: \mathbb{R} \rightarrow M$ with $\gamma(0)=a$.
Proof of the lemma is an easy exercise.
The set of all curves $\gamma: \mathbb{R} \rightarrow M$ with $\gamma(0)=a$ is thus split into equivalence classes called tangent vectors to M at the point a; the set of tangent vectors is called the tangent space to M at a and is denoted $T_{a} M$. The union of all $T_{a} M, a \in M$, is called the tangent bundle of M and is denoted $T M$.

The set $T M$ possesses a structure of a $2 n$-dimensional manifold defined as follows: let $A \xlongequal{=}\left\{\left(U_{\alpha}, V_{\alpha}, x_{\alpha}\right)\right\}$ be an atlas in M; take $\mathcal{U}_{\alpha} \stackrel{\text { def }}{=} \bigcup_{a \in U_{\alpha}} T_{a} M$ and $\mathcal{V}_{\alpha}=V_{\alpha} \times \mathbb{R}^{n} \subset \mathbb{R}^{2 n}$. Let $v \in T_{a} M$ be the equivalence class of a curve γ; then define $y_{\alpha}(v) \stackrel{\text { def }}{=}\left(x_{\alpha}(a),\left.\frac{d}{d t} x(\gamma(t))\right|_{t=0}\right) \in \mathcal{V}_{\alpha}$. By Property 1 from Lemma 1 the value $y_{\alpha}(v)$ does not depend on the choice of $\gamma \in v$.
Theorem 1. The set $\left\{\left(\mathcal{U}_{\alpha}, \mathcal{V}_{\alpha}, y_{\alpha}\right)\right\}$ is an atlas on $T M$ denoted \mathcal{T}_{A}. If A and B are equivalent atlases on M then \mathcal{T}_{A} and \mathcal{T}_{B} are equivalent.

Proof. Prove first that $\bigcup_{\alpha} \mathcal{U}_{\alpha}=T M$. By Lemma 1 the map $y_{\alpha}: \mathcal{U}_{\alpha} \rightarrow \mathcal{V}_{\alpha}$ is an injection. Prove it is a surjection, that is, for any $q \in \mathbb{R}^{n}$ there exists a curve $\gamma: \mathbb{R} \rightarrow M$ such that $\gamma(0)=a$ and $\left.\frac{d}{d t} x(\gamma(t))\right|_{t=0}=q$. If $q=0$ then it is enough to take $\gamma(t) \equiv a$. If $q \neq 0$, let $\ell=\{x(a)+q s \mid s \in \mathbb{R}\} \subset \mathbb{R}^{n}$ be the straight line through $x(a)$ in the direction of q. The open set $V_{\alpha} \ni x(a)$ contains a ball $B_{r}(x(a))$; now take a smooth function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ such that $\varphi(0)=0, \varphi^{\prime}(0)=1$ and $|\varphi(t)|<r /|q|$ for all t. Then one can take $\gamma(t) \stackrel{\text { def }}{=} x^{-1}(x(a)+q \varphi(t))$.

Let $a \in U_{\alpha} \cap U_{\beta}$. Then for t close to 0 one has $\gamma(t) \in U_{\alpha} \cap U_{\beta}$, too, and therefore

$$
\begin{aligned}
y_{\beta}(v) & =\left(\varphi_{\alpha \beta}\left(x_{\alpha}(a)\right), \frac{d}{d t}\left(\left.\varphi_{\alpha \beta}\left(x_{\alpha}(\gamma(t))\right)\right|_{t=0}\right)=\left(\varphi_{\alpha \beta}\left(x_{\alpha}(a)\right),\left.\varphi_{\alpha \beta}^{\prime}\left(x_{\alpha}(a)\right) \frac{d}{d t} x_{\alpha}(\gamma(t))\right|_{t=0}\right)\right. \\
& =\Phi_{\alpha \beta}\left(y_{\alpha}(v)\right)
\end{aligned}
$$

where $\Phi_{\alpha \beta}(b, q) \stackrel{\text { def }}{=}\left(\varphi_{\alpha \beta}(b), \varphi_{\alpha \beta}^{\prime}(b) q\right)$; here $\varphi_{\alpha \beta}^{\prime}(b)$ is the $n \times n$-matrix such that its matrix elements are partial derivatives of the components of the vector $\varphi_{\alpha \beta}(b) \in \mathbb{R}^{n}$ by the components of the vector b. Apparently $\Phi_{\alpha \beta}$ is a smooth map.

The Hausdorff property of \mathcal{T}_{A} is achieved by the usual addition of coordinate subsystems (check!).
Apparently $\mathcal{T}_{A \cup B}=\mathcal{T}_{A} \cup \mathcal{T}_{B}$. So if $A \cup B$ is an atlas on M then $\mathcal{T}_{A} \cup \mathcal{T}_{B}$ is an atlas on $T M$.
So, one defined a smooth $2 n$-dimensional structure on $T M$ that depends only on the smooth structure on M. The map $p: T M \rightarrow M$ that sends every vector $v \in T_{a} M$ to the point a is smooth: if x is the coordinate in a chart $U \ni a$ and y is the corresponding coordinate in the neighbourhood $\mathcal{U} \ni v$ then the map p in coordinates looks as a projection $p_{x y}(b, q)=b$. A smooth map $Z: M \rightarrow T M$ which is a right inverse to $p: p \circ Z=\mathrm{id}_{M}$ (in other words, $Z(a) \in T_{a} M$ for all $\left.a \in M\right)$ is called a smooth vector field on the manifold M.
2. Tangent space as a vector space. For any $a \in U_{\alpha} \subset M$ the map $y_{\alpha}: T_{a} M \rightarrow \mathbb{R}^{n}$ is one-to-one; also $y_{\beta}=\varphi_{\alpha \beta}^{\prime}\left(x_{\alpha}(a)\right) \circ y_{\alpha}$ is a composition of y_{α} with a linear map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. This means that $T_{a} M$ has a stucture of an n-dimensional vector space taken from \mathbb{R}^{n} : if $v_{1}, v_{2} \in T_{a} M$ then $v_{1}+v_{2} \stackrel{\text { def }}{=} y_{\alpha}^{-1}\left(y_{\alpha}\left(v_{1}\right)+\right.$ $\left.y_{\alpha}\left(v_{2}\right)\right)$. The vector $v_{1}+v_{2}$ does not depend on the choice of the coordinate system $\alpha: y_{\beta}^{-1}\left(y_{\beta}\left(v_{1}\right)+y_{\beta}\left(v_{2}\right)\right)=$ $y_{\alpha}^{-1}\left(\left(\varphi_{\alpha \beta}^{\prime}\left(x_{\alpha}(a)\right)\right)^{-1}\left(\varphi_{\alpha \beta}^{\prime}\left(x_{\alpha}(a)\right)\left(y_{\alpha}\left(v_{1}\right)\right)+\varphi_{\alpha \beta}^{\prime}\left(x_{\alpha}(a)\right)\left(y_{\alpha}\left(v_{2}\right)\right)\right)\right)=y_{\alpha}^{-1}\left(y_{\alpha}\left(v_{1}\right)+y_{\alpha}\left(v_{2}\right)\right)=v_{1}+v_{2}$; the same for multiplication of $v \in T_{a} M$ by a scalar $t \in \mathbb{R}$.

Lemma 2. Let $a \in U$ where $\left(U, V, x=\left(x_{1}, \ldots, x_{n}\right)\right.$) is a coordinate system. The equivalence classes of curves $\gamma_{i}(t) \stackrel{\text { def }}{=} x^{-1}\left(x_{1}(a), \ldots, x_{i}(a)+t, \ldots, x_{n}(a)\right), i=1, \ldots, n$, form a basis in $T_{a} M$.

The lemma follows immediately from Statement 1 of Lemma 1: one has then $\left.\frac{d}{d t}\left(x\left(\gamma_{i}(t)\right)\right)\right|_{t=0}=(0, \ldots, 1, \ldots, 0)$ (1 in the i-th position); such vectors form a basis in \mathbb{R}^{n}. The basis in $T_{a} M$ so defined is usually denoted $\frac{\partial}{\partial x_{1}}(a), \ldots, \frac{\partial}{\partial x_{n}}(a)$; this notation will be explained later.
Example 1. Let $M=S^{1}=\left\{(x, y) \stackrel{\text { def }}{=} u^{2}+v^{2}=1\right\}$. Take an atlas $\left\{\left(U_{1},(-\pi, \pi), x_{1}\right),\left(U_{2},(-\pi, \pi), x_{2}\right)\right\}$ of two coordinate systems where $U_{1}=S^{1} \backslash\{(-1,0)\}$ and $U_{2}=S^{1} \backslash\{(1,0)\} ; x_{1}(q) \in(-\pi, \pi)$ is the angle (counterclockwise) between the radius of q and the positive direction of the x axis, and $x_{2}(q) \in(-\pi, \pi)$ the angle (counterclockwise) between the radius of q and the negative direction of the x axis. The transition map is $\varphi_{12}(s)=s+\pi$ for $-\pi<s<0$ and $\varphi_{12}(s)=s-\pi$ for $0<s<\pi$. It is easy to see that the atlas is equivalent to the standard one. Let $\gamma_{a}(t) \in S^{1}$ be a point whose radius forms an angle $t \bmod 2 \pi$ with the radius of the point a. Then $y_{1}\left(\gamma_{a}\right)=\left(x_{1}(a), 1\right)$ and $y_{2}\left(\gamma_{a}\right)=\left(x_{2}(a),-1\right)$ for all a. Thus, the curve γ_{a} represents a nonzero element $v_{a}=\frac{\partial}{\partial x_{1}}(a)=\frac{\partial}{\partial x_{2}}(a) \in T_{a} M$; since $\operatorname{dim} T_{a} M=1$, any other vector $v \in T_{a} M$ is equal to $z v_{a}$ for some $z \in \mathbb{R}$. Thus a map sending v to the pair (a, z) is a diffeomorphism between $T S^{1}$ and $S^{1} \times \mathbb{R}$.
3. Derivative of a smooth map. Let $f: M_{1} \rightarrow M_{2}$ be a smooth map between two manifolds (possibly of different dimensions). Let $\gamma: \mathbb{R} \rightarrow M_{1}$ be a smooth map with $\gamma(0)=a \in M_{1}$ represent a vector $v \in T_{a} M_{1}$; then the smooth map $f \circ \gamma: \mathbb{R} \rightarrow M_{2}$ represents a vector $w \in T_{f(a)} M_{2}$.
Lemma 3. The vector w depends only on the vector v, not on a particular choice of the map representing v. The mapping $f^{\prime}(a): T_{a} M_{1} \rightarrow T_{f(a)} M_{2}$ defined as $f^{\prime}(a) v \stackrel{\text { def }}{=} w$ is linear. It satisfies the chain rule: if $h=g \circ f$ where $g: M_{2} \rightarrow M_{3}$ is a smooth map then $h^{\prime}(a)=g^{\prime}(f(a)) \circ f^{\prime}(a)$.

The mapping $f^{\prime}(a)$ is called, as the notation suggests, the derivative of the map f at the point a.
The main idea of the proof. Fix coordinate systems x_{1} and x_{2} in the neighbourhoods $U_{1} \ni a$ and $U_{2} \ni f(a)$ on M_{1} and M_{2}, respectively. Let the coordinate form of the map f is $f_{12}=x_{2} \circ f \circ x_{1}^{-1}: V \rightarrow \mathbb{R}^{n}$ where $V \subset \mathbb{R}^{n}$ is an open set containing $x(a)$. An easy calculation shows that the coordinate form $y_{2} \circ f^{\prime}(a) \circ y_{1}^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ of the map $f^{\prime}(a)$ in the corresponding coordinates y_{1} and y_{2} on $T M_{1}$ and $T M_{2}$ is equal to $f_{12}^{\prime}(x(a))$, that is, a linear map with the $n \times n$-matrix made of partial derivatives of the components of $f_{12}(b)$ by the components of b.
4. Submanifolds and the implicit function theorem. A subset $N \subset M$ of an m-dimensional manifold M is called a submanifold of dimension $n \leq m$ if for any $a \in N$ there is a coordinate system $\left(U, V, x=\left(x_{1}, \ldots, x_{m}\right)\right.$) in M with $a \in U$ such that $N \cap U=\left\{b \in U \mid x_{n+1}(b)=\cdots=x_{m}(b)=0\right\}$. A submanifold has a naturally defined structure of a smooth n-dimensional manifold: the charts are $\tilde{U}=U \cap N$ where U are the charts mentioned above, and the coordinates in \tilde{U} are x_{1}, \ldots, x_{n}.
Theorem 2 (implicit function theorem for manifolds). Let $f: M \rightarrow K$ be a smooth map between manifolds of dimensions m and $k \leq m$, respectively. Let $c \in K$ be a regular value, that is, for any $x \in f^{-1}(c)$ the rank of the linear map $f^{\prime}(x): T_{x} M \rightarrow T_{c} K$ is equal to k. Then $f^{-1}(c)$ is a smooth submanifold of M of dimension $m-k$.
Proof. Let $f(a)=c$, and $U \ni a, W \ni c$ be charts in M and K, respectively. Coordinate maps identify them with open subsets in \mathbb{R}^{m} and \mathbb{R}^{k}; we will omit these maps in formulas writing simply $U \subset \mathbb{R}^{m}, W \subset \mathbb{R}^{k}$. Without loss of generality take $c=0$. By the implicit function theorem for \mathbb{R}^{N} there exists an open subset $V \subset \mathbb{R}^{m-k}$ and a smooth map $g: W \times V \rightarrow U$ such that $f(g(w, v))=w$ for all $w \in W, v \in V$. Now $g^{-1}: g(W \times V) \rightarrow W \times V$ is the required coordinate map; $g(W \times V) \subset U$ is a chart.
Example 2. Submanifolds of M of dimension m are open subsets $U \subset M$, and only they.
Example 3. A sphere $S=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{1}^{2}+\cdots+x_{n}^{2}=1\right\}$ is $f^{-1}(1)$ where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is given by $f(x)=x_{1}^{2}+\cdots+x_{n}^{2}$. The derivative $f^{\prime}(x)=2 x \neq 0$ for $x \in S$, so S is a submanifold of \mathbb{R}^{n} of dimension $n-1$.
Example 4. $N=\left\{(x, y) \in \mathbb{R}^{2} \mid x y=0\right\}$ is not a 1-dimensional submanifold of \mathbb{R}^{2}, Indeed, let U be a chart containing $(0,0)$. By the implicit function theorem there exists an open ball $V \subset U$ such that the set $\left\{b \in V \mid x_{2}(b)=0\right\}$ is an image of a smooth embedding $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ (an embedded curve) and is therefore homeomorphic to the real line. An intersection of N with an open ball is not homeomorphic to a line (it splits into 4 components if a point $(0,0)$ is deleted, while a line splits in two).

The set $N=\left\{(x, y) \in \mathbb{R}^{2} \mid x y=a\right\}$ for any $a \neq 0$ is a 1 -submanifold, as follows from Theorem $2: f(x, y)=x y$, $f^{\prime}(x, y)=(y, x) \neq 0$ if $x y=a \neq 0$.
Example 5. A submanifold need not be a closed set (it may be even open) but should be locally closed: for any $a \in N$ there exists an open set $U \subset M, a \in U$, such that $N \cap U$ is closed in U (because it is defined by equations with continuous functions x_{n+1}, \ldots, x_{m} in the left-hand side). Let $\mathbb{T}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$ be a 2 -dimensional torus; it has a naturally defined structure of a 2-dimensional manifold (provide details!). Take a number $\alpha \notin \mathbb{Q}$; the image of the line $\left\{(t, \alpha t) \in \mathbb{R}^{2}\right\}$ under the natural projection $\mathbb{R}^{2} \rightarrow \mathbb{T}^{2}$ is homeomorphic to the line, and the projection restricted to the line is a smooth embedding. Nevertheless, the image of the projection is not locally closed (it is dense in \mathbb{T}^{2}), hence, it is not a 1 -submanifold.

