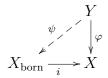
- **8.1.** Пусть X полное локально выпуклое пространство, P направленное определяющее семейство полунорм на X. Напомним (см. лекцию), что существует топологический изоморфизм $X\cong \varprojlim \tilde{X}_p$, где для каждого $p\in P$ через \tilde{X}_p обозначено пополнение нормированного пространства $X_p=(X/p^{-1}(0),\hat{p})$. Опишите пространства \tilde{X}_p для каждого из следующих пространств X:
- (a) \mathbb{K}^S , где S множество;
- (b) C(T), где T локально компактное топологическое пространство;
- (c) $C^{\infty}(U)$, где $U \subset \mathbb{R}^n$ открытое множество;
- (d) $\mathscr{O}(U)$, где $U \subset \mathbb{C}^n$ открытое множество;
- (e) пространство Шварца $\mathscr{S}(\mathbb{R}^n)$;
- (f) пространства Кёте $\lambda^{\nu}(P)$;
- (g) $C_c(T)$, где T локально компактное топологическое пространство со счетной базой.
- **8.2.** Пусть X хаусдорфово локально выпуклое пространство. Опишите пополнение сопряженного пространства X', снабженного слабой* топологией.

Определение 8.1. Пусть X — локально выпуклое пространство. *Борнологическое пространство, ассоциированное с* X, — это пара (X_{born}, i) , состоящая из борнологического локально выпуклого пространства X_{born} и отображения $i \in \mathcal{L}(X_{\text{born}}, X)$ и обладающая следующим свойством: для любого борнологического локально выпуклого пространства Y и любого $\varphi \in \mathcal{L}(Y, X)$ существует единственное отображение $\psi \in \mathcal{L}(Y, X_{\text{born}})$, делающее диаграмму



коммутативной.

- **8.3.** Пусть X локально выпуклое пространство. Предположим, что на X существует локально выпуклая топология \mathcal{T} , которая не слабее исходной, превращает X в борнологическое локально выпуклое пространство и обладает тем свойством, что подмножество X \mathcal{T} -ограничено тогда и только тогда, когда оно ограничено в исходной топологии. Докажите, что пространство (X,\mathcal{T}) вместе с тождественным отображением $(X,\mathcal{T}) \to X$ борнологическое пространство, ассоциированное с X.
- **8.4** (конструкция X_{born}). Пусть X локально выпуклое пространство. Обозначим через P_{born} семейство все полунорм p на X, обладающих тем свойством, что для каждого ограниченного множества $B \subset X$ множество p(B) ограничено в \mathbb{R} . Докажите, что пространство $(X, \tau(P_{\text{born}}))$ вместе с тождественным отображением $(X, \tau(P_{\text{born}})) \to X$ борнологическое пространство, ассоциированное с X.
- **8.5.** Интерпретируйте X_{born} в терминах сопряженных функторов.
- **8.6** (другая конструкция X_{born}). Пусть X локально выпуклое пространство, Bdd(X) семейство всех его абсолютно выпуклых ограниченных подмножеств. Введем на Bdd(X) отношение порядка, полагая $B_1 \leqslant B_2$, если B_1 поглощается B_2 . Для каждого $B \in \text{Bdd}(X)$ положим $X_B = \text{span}(B)$ и будем рассматривать X_B как полунормированное пространство, полунорма на котором функционал Минковского множества B. Если $B_1, B_2 \in \text{Bdd}(X)$ и $B_1 \leqslant B_2$, то тавтологическое вложение X_{B_1} в X_{B_2} непрерывно (убедитесь). Таким образом, пространства X_B образуют прямую систему. Докажите, что $\varprojlim\{X_B: B \in \text{Bdd}(X)\} \cong X_{\text{born}}$.

- 8.7. Докажите, что
- (а) локально выпуклое пространство борнологично тогда и только тогда, когда оно изоморфно прямому пределу полунормированных пространств;
- (b) полное борнологическое локально выпуклое пространство изоморфно прямому пределу банаховых пространств.
- **8.8.** Пусть X и Y нормированные пространства. Докажите, что множество $S \subset \mathcal{L}(X,Y)$ равностепенно непрерывно тогда и только тогда, когда оно ограничено по операторной норме.
- **8.9.** Приведите пример нормированного пространства и слабо * ограниченной последовательности в X', не ограниченной по норме. (Этот пример показывает, что для неполных нормированных пространств теорема Банаха–Штейнгауза неверна, и поэтому нормированное пространство может не быть бочечным. В частности, борнологическое локально выпуклое пространство не всегда бочечно.)
- **8.10*** (бочечное неборнологическое пространство). Пусть S несчетное множество, $X = \mathbb{K}^S$, X_0 подпространство в X, состоящее из функций с не более чем счетным носителем, и $X_1 = X_0 \oplus \mathbb{K}1 \subset X$. Докажите, что
- (a) X_0 бочечно;
- (b) если локально выпуклое пространство содержит плотное бочечное подпространство, то оно бочечно;
- (c) X_1 бочечно;
- (d) секвенциально замкнутая гиперплоскость борнологического локально выпуклого пространства замкнута;
- (e) X_1 не является борнологическим.
- **8.11.** Пусть X и Y локально выпуклые пространства, $A \subset X$ плотное подмножество. Докажите, что на каждом равностепенно непрерывном подмножестве $S \subset \mathcal{L}(X,Y)$ топология поточечной сходимости на элементах A совпадает с топологией равномерной сходимости на компактах.
- **8.12.** Пусть X и Y локально выпуклые пространства, причем X бочечно. Предположим, что (T_n) такая последовательность в $\mathcal{L}(X,Y)$, что для каждого $x \in X$ последовательность (T_nx) сходится в Y. Докажите, что (T_n) поточечно сходится к некоторому $T \in \mathcal{L}(X,Y)$. Верно ли аналогичное утверждение для направленностей?
- **8.13.** Пусть X, Y, Z локально выпуклые пространства, причем X и Y метризуемы, и хотя бы одно из пространств X, Y полно. Докажите, что каждое раздельно непрерывное билинейное отображение $X \times Y \to Z$ непрерывно. Верно ли это утверждение, если X, Y неполные нормированные пространства?
- **8.14.** Пусть X и Y локально выпуклые пространства, причем X квазибочечно. Докажите, что каждое ограниченное подмножество $S \subset \mathscr{L}_b(X,Y)$ равностепенно непрерывно.
- **8.15.** Пусть X и Y метризуемые локально выпуклые пространства, причем X полно, и пусть $\varphi \in \mathcal{L}(X,Y)$. Докажите, что либо $\varphi(X) = Y$, либо $\varphi(X)$ множество первой категории в Y (т.е. объединение счетного числа нигде не плотных множеств).
- **8.16** (теорема Гротендика о факторизации). Пусть X пространство Фреше, Y локально выпуклое пространство, $\{X_n\}$ последовательность пространств Фреше, $\varphi \in \mathcal{L}(X,Y)$ и $\varphi_n \in \mathcal{L}(X_n,Y)$ ($n \in \mathbb{N}$). Предположим, что $\varphi(X) \subset \bigcup_n \varphi_n(X_n)$. Докажите, что (a) $\varphi(X) \subset \varphi_n(X_n)$ для некоторого n;

(b) если все φ_i инъективны, то для некоторого n существует такое отображение $\psi \in \mathcal{L}(X, X_n)$, что $\varphi = \varphi_n \psi$.

Yказание: пусть $Z_n = X \times_Y X_n$ и $\pi_n \colon Z_n \to X$ — проекция на 1-ый сомножитель; с помощью теоремы Бэра и 8.15 докажите, что $X = \pi_n(Z_n)$ для некоторого n.

- 8.17 (теоремы Гротендика об открытом отображении и о замкнутом графике). Пусть X и Y локально выпуклые пространства. Предположим, что топология на X является индуктивной относительно некоторой последовательности линейных отображений $\{\varphi_n\colon X_n\to X\}$, где X_n пространства Фреше и $\bigcup_n \varphi_n(X_n) = X$, а топология на Y является индуктивной относительно некоторого (не обязательно счетного) семейства линейных отображений $\{\psi_i\colon Y_i\to Y\}$, где Y_i пространства Фреше и $\bigcup_i \psi_i(Y_i) = Y$ (например, это так, если Y полное борнологическое пространство; см. задачу 8.7). Докажите, что
- (1) каждая непрерывная линейная сюръекция X на Y открыта;
- (2) каждое линейное отображение из Y в X с замкнутым графиком непрерывно.