14.1. Let $\mathscr{P}(\mathbb{T})$ denote the closure of $\mathbb{C}[z]$ in $C(\mathbb{T})$, where z is the coordinate on \mathbb{C}. Recall that the disk algebra $\mathscr{A}(\overline{\mathbb{D}})$ consists of those $f \in C(\overline{\mathbb{D}})$ that are holomorphic on the disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$. Show that each $f \in \mathscr{P}(\mathbb{T})$ uniquely extends to $\tilde{f} \in \mathscr{A}(\overline{\mathbb{D}})$, and that $\sigma_{\mathscr{P}(\mathbb{T})}(f)=\tilde{f}(\overline{\mathbb{D}})$.
14.2. A unital commutative algebra A is local if A has a unique maximal ideal. Construct a local Banach algebra without zero divisors.

Hint. Consider the subalgebra of $\mathbb{C}[[z]]$ that consists of formal series $a=\sum c_{n} z^{n}$ satisfying $\|a\|=\sum\left|c_{n}\right| w_{n}<\infty$. Here $\left(w_{n}\right)$ is a sequence of positive numbers satisfying some special conditions.
14.3. Prove that for each unital algebra A and each $a \in A$ we have $\sigma_{A_{+}}(a)=\sigma(a) \cup\{0\}$.
14.4. (a) Let A be a Banach algebra, $a, b \in A$, $a b=b a$. Prove that $r(a+b) \leqslant r(a)+r(b)$ and $r(a b) \leqslant r(a) r(b)$ (where r is the spectral radius).
(b) Does (a) hold if we drop the assumption that $a b=b a$?
14.5. Let $c_{00} \subset c_{0}$ denote the ideal of finite sequences (i.e., of those sequences $a=\left(a_{n}\right)$ such that $a_{n}=0$ for all but finitely many $n \in \mathbb{N}$). Prove that c_{00} is not contained in a maximal ideal of c_{0}.
14.6. Let $A=\{f \in C[0,1]: f(0)=0\}$, and let $I=\{f \in A: f$ vanishes on a neighborhood of 0$\}$. Prove that I is not contained in a maximal ideal of A.
14.7. Let X be a compact Hausdorff topological space. For each closed subset $Y \subset X$ let $I_{Y}=\{f \in$ $\left.C(X):\left.f\right|_{Y}=0\right\}$. Prove that the assignment $Y \mapsto I_{Y}$ is a 1-1 correspondence between the collection of all closed subsets of X and the collection of all closed ideals of $C(X)$.
14.8. A commutative algebra A is semisimple if the intersection of all maximal modular ideals of A (the Jacobson radical of A) is $\{0\}$. Show that every homomorphism from a Banach algebra to a commutative semisimple Banach algebra is continuous.
14.9. Describe the maximal spectrum and the Gelfand transform for the algebras (a) $C^{n}[0,1]$;
(b) $\mathscr{A}(\bar{D})$;
(c) $\mathscr{P}(\mathbb{T})$.
14.10. Let $A(\mathbb{T})=\left\{f \in C(\mathbb{T}): \sum_{n \in \mathbb{Z}}|\hat{f}(n)|<\infty\right\}$, where $\hat{f}(n)$ is the nth Fourier coefficient of f w.r.t. the trigonometric system $\left(e_{n}\right)$ on \mathbb{T} (i.e., $e_{n}(z)=z^{n}$ for all $z \in \mathbb{T}$ and $n \in \mathbb{Z}$). Prove that $A(\mathbb{T})$ is a spectrally invariant subalgebra of $C(\mathbb{T})$.
14.11. Let X be a topological space, let $\beta X=\operatorname{Max} C_{b}(X)$, and let $\varepsilon: X \rightarrow \beta X$ take each $x \in X$ to the evaluation map $\varepsilon_{x}: C_{b}(X) \rightarrow \mathbb{C}$ given by $\varepsilon_{x}(f)=f(x)$.
(a) Prove that $(\beta X, \varepsilon)$ is the Stone-Cech compactification of X (i.e., for each compact Hausdorff topological space and each continuous map $f: X \rightarrow Y$ there exists a unique continuous map $\tilde{f}: \beta X \rightarrow$ Y such that $\tilde{f} \circ \varepsilon=f)$.
(b) Prove that $\varepsilon(X)$ is dense in βX.
(c) Prove that ε is a homeomorphism onto $\varepsilon(X)$ if and only if X is completely regular.
14.12. Let A be a commutative algebra, and I be a maximal ideal of A. Prove that I is either modular or a codimension 1 ideal containing $A^{2}=\operatorname{span}\{a b: a, b \in A\}$.
14.13. Let A be a commutative algebra, and let $\operatorname{Max}_{+}(A)=\operatorname{Max}(A) \cup\{A\}$. Prove that the map $\operatorname{Max}\left(A_{+}\right) \rightarrow \operatorname{Max}_{+}(A), I \mapsto I \cap A$, is a bijection.
14.14. (a) Does there exist a norm and an involution on $C^{1}[a, b]$ making it into a C^{*}-algebra?
(b) Does there exist a norm and an involution on $\mathscr{A}(\overline{\mathbb{D}})$ making it into a C^{*}-algebra?
14.15. Let X be a locally compact Hausdorff topological space, and let X_{+}denote the one-point compactification of X. For each $f \in C_{0}(X)$, define $f_{+}: X_{+} \rightarrow \mathbb{C}$ by $f_{+}(x)=f(x)$ for $x \in X$ and $f_{+}(\infty)=0$. Prove that f_{+}is continuous, and that the map $C_{0}(X)_{+} \rightarrow C\left(X_{+}\right), f+\lambda 1_{+} \mapsto f_{+}+\lambda$, is an isometric $*$-isomorphism. (Here we assume that $C_{0}(X)_{+}$is equipped with the canonical C^{*}-norm extending the supremum norm on $C_{0}(X)$.)
14.16. Let A and B be C^{*}-algebras. Show that if B is commutative, then each homomorphism from A to B is a $*$-homomorphism. Does the above result hold without the commutativity assumption?
14.17. Let $A=C^{1}[0,1]$.
(a) Is A hermitian?
(b) Does the identity $\|a\|=r(a)$ hold in A ?
14.18. Let $A=\mathscr{A}(\overline{\mathbb{D}})$. (a) Is A hermitian? (b) Does the identity $\|a\|=r(a)$ hold in A ?
14.19. (a) Let H be a $*$-module over a Banach $*$-algebra A. Assume that $\operatorname{End}_{A}(H)=\mathbb{C} \mathbf{1}_{H}$. Show that H is irreducible.
(b) Does (a) hold if H is a Banach A-module (but is not necessarily a $*$-module)?

