14.1. Let $\mathscr{P}(\mathbb{T})$ denote the closure of $\mathbb{C}[z]$ in $C(\mathbb{T})$, where z is the coordinate on \mathbb{C} . Recall that the disk algebra $\mathscr{A}(\bar{\mathbb{D}})$ consists of those $f \in C(\bar{\mathbb{D}})$ that are holomorphic on the disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. Show that each $f \in \mathscr{P}(\mathbb{T})$ uniquely extends to $\tilde{f} \in \mathscr{A}(\bar{\mathbb{D}})$, and that $\sigma_{\mathscr{P}(\mathbb{T})}(f) = \tilde{f}(\bar{\mathbb{D}})$.

14.2. A unital commutative algebra A is *local* if A has a unique maximal ideal. Construct a local Banach algebra without zero divisors.

Hint. Consider the subalgebra of $\mathbb{C}[[z]]$ that consists of formal series $a = \sum c_n z^n$ satisfying $||a|| = \sum |c_n|w_n < \infty$. Here (w_n) is a sequence of positive numbers satisfying some special conditions.

14.3. Prove that for each unital algebra A and each $a \in A$ we have $\sigma_{A_+}(a) = \sigma(a) \cup \{0\}$.

14.4. (a) Let A be a Banach algebra, $a, b \in A$, ab = ba. Prove that $r(a + b) \leq r(a) + r(b)$ and $r(ab) \leq r(a)r(b)$ (where r is the spectral radius).

(b) Does (a) hold if we drop the assumption that ab = ba?

14.5. Let $c_{00} \subset c_0$ denote the ideal of finite sequences (i.e., of those sequences $a = (a_n)$ such that $a_n = 0$ for all but finitely many $n \in \mathbb{N}$). Prove that c_{00} is not contained in a maximal ideal of c_0 .

14.6. Let $A = \{f \in C[0,1] : f(0) = 0\}$, and let $I = \{f \in A : f \text{ vanishes on a neighborhood of } 0\}$. Prove that I is not contained in a maximal ideal of A.

14.7. Let X be a compact Hausdorff topological space. For each closed subset $Y \subset X$ let $I_Y = \{f \in C(X) : f|_Y = 0\}$. Prove that the assignment $Y \mapsto I_Y$ is a 1-1 correspondence between the collection of all closed subsets of X and the collection of all closed ideals of C(X).

14.8. A commutative algebra A is *semisimple* if the intersection of all maximal modular ideals of A (the *Jacobson radical* of A) is $\{0\}$. Show that every homomorphism from a Banach algebra to a commutative semisimple Banach algebra is continuous.

14.9. Describe the maximal spectrum and the Gelfand transform for the algebras (a) $C^n[0,1]$; (b) $\mathscr{A}(\bar{\mathbb{D}})$; (c) $\mathscr{P}(\mathbb{T})$.

14.10. Let $A(\mathbb{T}) = \{f \in C(\mathbb{T}) : \sum_{n \in \mathbb{Z}} |\hat{f}(n)| < \infty\}$, where $\hat{f}(n)$ is the *n*th Fourier coefficient of f w.r.t. the trigonometric system (e_n) on \mathbb{T} (i.e., $e_n(z) = z^n$ for all $z \in \mathbb{T}$ and $n \in \mathbb{Z}$). Prove that $A(\mathbb{T})$ is a spectrally invariant subalgebra of $C(\mathbb{T})$.

14.11. Let X be a topological space, let $\beta X = \operatorname{Max} C_b(X)$, and let $\varepsilon \colon X \to \beta X$ take each $x \in X$ to the evaluation map $\varepsilon_x \colon C_b(X) \to \mathbb{C}$ given by $\varepsilon_x(f) = f(x)$.

(a) Prove that $(\beta X, \varepsilon)$ is the Stone-Čech compactification of X (i.e., for each compact Hausdorff topological space and each continuous map $f: X \to Y$ there exists a unique continuous map $\tilde{f}: \beta X \to Y$ such that $\tilde{f} \circ \varepsilon = f$).

(b) Prove that $\varepsilon(X)$ is dense in βX .

(c) Prove that ε is a homeomorphism onto $\varepsilon(X)$ if and only if X is completely regular.

14.12. Let A be a commutative algebra, and I be a maximal ideal of A. Prove that I is either modular or a codimension 1 ideal containing $A^2 = \operatorname{span}\{ab : a, b \in A\}$.

14.13. Let A be a commutative algebra, and let $Max_+(A) = Max(A) \cup \{A\}$. Prove that the map $Max(A_+) \to Max_+(A)$, $I \mapsto I \cap A$, is a bijection.

14.14. (a) Does there exist a norm and an involution on $C^1[a, b]$ making it into a C^* -algebra? (b) Does there exist a norm and an involution on $\mathscr{A}(\overline{\mathbb{D}})$ making it into a C^* -algebra? 14.15. Let X be a locally compact Hausdorff topological space, and let X_+ denote the one-point compactification of X. For each $f \in C_0(X)$, define $f_+: X_+ \to \mathbb{C}$ by $f_+(x) = f(x)$ for $x \in X$ and $f_+(\infty) = 0$. Prove that f_+ is continuous, and that the map $C_0(X)_+ \to C(X_+)$, $f + \lambda 1_+ \mapsto f_+ + \lambda$, is an isometric *-isomorphism. (Here we assume that $C_0(X)_+$ is equipped with the canonical C^* -norm extending the supremum norm on $C_0(X)$.)

14.16. Let A and B be C^* -algebras. Show that if B is commutative, then each homomorphism from A to B is a *-homomorphism. Does the above result hold without the commutativity assumption?

14.17. Let $A = C^{1}[0, 1]$. (a) Is A hermitian? (b) Does the identity ||a|| = r(a) hold in A?

14.18. Let $A = \mathscr{A}(\overline{\mathbb{D}})$. (a) Is A hermitian? (b) Does the identity ||a|| = r(a) hold in A?

14.19. (a) Let *H* be a *-module over a Banach *-algebra *A*. Assume that $\operatorname{End}_A(H) = \mathbb{C}\mathbf{1}_H$. Show that *H* is irreducible.

(b) Does (a) hold if H is a Banach A-module (but is not necessarily a *-module)?