11.1. Let G be a locally compact group. As was shown in the lectures, $L^1(G)$ is a Banach algebra under convolution.

(a) Show that $L^1(G)$ is a Banach *-algebra w.r.t. the involution $f^*(x) = \overline{f(x^{-1})}\Delta(x^{-1})$ $(f \in L^1(G), x \in G)$.

(b) Show that $L^1(G)$ (equipped with the standard L^1 -norm and with the involution defined in (a)) is not a C^* -algebra unless $G = \{e\}$.

(c) Show that $L^{1}(G)$ is commutative if and only if G is commutative.

(d) Show that $L^1(G)$ is unital if and only if G is discrete.

11.2. Let G be a locally compact group, and let $p, q \in (1, +\infty)$ satisfy 1/p + 1/q = 1. Show that, for each $f \in L^p(G)$ and $g \in L^q(G)$, the convolution f * Sg (where $(Sg)(x) = g(x^{-1})$) is defined everywhere on G, belongs to $C_0(G)$, and that $||f * Sg||_{\infty} \leq ||f||_p ||g||_q$.

11.3. Let G be a locally compact group.

(a) Show that M(G) is a unital Banach *-algebra w.r.t. the involution $\nu^*(B) = \overline{\nu(B^{-1})}$ ($\nu \in M(G)$, $B \subset G$ is a Borel set). In particular, show that convolution is associative on M(G) (this was not proved at the lectures).

(b) Show that M(G) is commutative if and only if G is commutative.

(c) Let μ be a left Haar measure on G. Show that the map $i: L^1(G) \to M(G), f \mapsto f \cdot \mu$, is an isometric *-algebra homomorphism.

(d) Identify $L^1(G)$ with its canonical image in M(G) (see (c) above). Show that $L^1(G)$ is a closed 2-sided ideal of M(G), and that for each $f \in L^1(G)$, $\nu \in M(G)$, and for almost all $x \in G$ we have

$$(\nu * f)(x) = \int_G f(y^{-1}x) \, d\nu(y), \qquad (f * \nu)(x) = \int_G f(xy^{-1}) \Delta(y^{-1}) \, d\nu(y). \tag{1}$$

11.4. Let G be a locally compact group, and let λ (resp. ρ) denote the left (resp. right) regular representation of G on $L^1(G)$. Show that $\lambda(x)f = \delta_x * f$ and $\rho(x)f = f * \delta_{x^{-1}}$ ($f \in L^1(G), x \in G$).

11.5. Let X be a locally compact Hausdorff topological space.

- (a) Construct a bounded approximate identity in $C_0(X)$.
- (b) Show that $C_0(X)$ has a sequential bounded approximate identity if and only if X is σ -compact.

11.6. Let H be a Hilbert space.

- (a) Construct a bounded approximate identity in $\mathscr{K}(H)$.
- (b) Show that $\mathscr{K}(H)$ has a sequential bounded approximate identity if and only if H is separable.

11.7. Let G be a locally compact group, and let (u_i) be a Dirac net in $L^1(G)$. Show that (u_i) converges to $\delta_e \in M(G)$ w.r.t. the weak^{*} topology on M(G).

11.8. Let A be a Banach algebra with a bounded approximate identity (e_{α}) , and let E be a left Banach A-module. Recall that the *essential part* of E is $E_{ess} = \overline{\operatorname{span}\{av : a \in A, v \in E\}}$.

- (a) Show that E_{ess} is the largest essential submodule of E.
- (b) Show that $E_{\text{ess}} = \{ v \in E : v = \lim e_{\alpha} v \}.$

(c) Does (a) hold without the assumption that A has a b.a.i.?

11.9. Let G be a locally compact group, $\nu \in M(G)$, and $f \in L^p(G)$ (where $1 \leq p \leq \infty$).

(a) Show that the convolution $\nu * f$ given by (1) is defined a.e. on G, that $\nu * f \in L^p(G)$, and that the action $(\nu, f) \mapsto \nu * f$ makes $L^p(G)$ into a left unital Banach M(G)-module.

- (b) Show that $L^p(G)$ is essential over $L^1(G)$ if $p < \infty$.
- (c) Find the essential part of $L^{\infty}(G)$ over $L^{1}(G)$.

11.10. Define $f: [0,1] \to c_0$ by

 $f(t) = (\chi_{(0,1]}(t), 2\chi_{(0,1/2]}(t), \dots, n\chi_{(0,1/n]}(t), \dots) \qquad (t \in [0,1]).$

Show that f is Dunford integrable (w.r.t. the Lebesgue measure on [0, 1]), but is not Pettis integrable.

11.11. Let (X, μ) be a measure space, and let E, F be Banach spaces.

(a) Suppose that $f: X \to E$ is Dunford integrable and that $||f||: x \mapsto ||f(x)||$ is integrable. Show that $||\int f d\mu|| \leq \int ||f|| d|\mu|$.

(b) Suppose that $f: X \to E$ is Pettis integrable. Show that for each bounded linear map $T: E \to F$ the function $T \circ f$ is Pettis integrable, and that $T(\int f d\mu) = \int (T \circ f) d\mu$.

11.12. Let G be a locally compact group, and let π be a uniformly bounded continuous representation of G on a reflexive Banach space E. Recall that the *canonical extension* of π to M(G) is given by $\tilde{\pi}(\nu)v = \int_{G} \pi(x)v \, d\nu(x) \ (\nu \in M(G), v \in E).$

(a) Show that $\tilde{\pi}$ is indeed a representation of M(G) on E.

(b) Choose a left Haar measure μ on G. Show that for each $g \in L^1(G)$ (where $L^1(G)$ is canonically embedded into M(G)) we have $\tilde{\pi}(g)v = \int_G g(x)\pi(x)v \,d\mu(x)$.

(c) Suppose that E is a Hilbert space. Show that $\tilde{\pi}$ is a *-representation if and only if π is unitary.

11.13. Let G be a locally compact group. Show that, for each $\nu \in M(G)$ and $f \in L^p(G)$ (where $1), we have <math>\nu * f = \tilde{\lambda}(\nu)f$, where λ is the left regular representation of G on $L^p(G)$ and $\tilde{\lambda}$ is the canonical extension of λ to M(G).

11.14. Let A be a Banach algebra, and let $B \subset A$ be a closed 2-sided ideal with a bounded approximate identity. Show that

(a) if E is a B-essential Banach A-module and $E_0 \subset E$ is a closed B-submodule, then E_0 is an A-submodule;

(b) if E and F are B-essential Banach A-modules, then $\operatorname{Hom}_A(E, F) = \operatorname{Hom}_B(E, F)$;

(c) if H is a Hilbert space equipped with an action of A which makes H into a B-essential Banach A-module, then H is a *-module over B iff H is a *-module over A.

11.15. Define a representation π of \mathbb{R} on $L^2(\mathbb{R})$ by $(\pi(t)f)(x) = e^{-2\pi i t x} f(x)$. Find an explicit formula for the associated representation $\tilde{\pi}$ of $L^1(\mathbb{R})$. Show that π is unitarily isomorphic to the left regular representation.