- **8.1.** Let π be a representation of a topological group G on a finite-dimensional vector space E. We endow E and GL(E) with the standard (normed) topologies. Prove that π is continuous (i.e., the map $G \times E \to E$, $(x,v) \mapsto \pi(x)v$, is continuous) if and only if π is a continuous map from G to GL(E).
- **8.2.** Let π be a representation of a locally compact group G on a Banach space E. Let $\mathrm{GL}_{\mathrm{top}}(E)$ denote the group of all linear topological automorphisms of E. Prove that π is continuous (i.e., the map $G \times E \to E$, $(x, v) \mapsto \pi(x)v$, is continuous) if and only if π is a continuous map from G to $\mathrm{GL}_{\mathrm{top}}(E)$ equipped with the strong operator topology.
- **8.3.** Let G be a nondiscrete locally compact group. Show that the left regular representation of G on $L^2(G)$ is a discontinuous map from G to $GL_{top}(G)$ with respect to the norm topology on $GL_{top}(E)$.
- **8.4.** Let G be a topological group, and let H be a unitary G-module. Prove that for each closed G-submodule H_0 of H the orthogonal complement H_0^{\perp} is a G-submodule. (Thus $H = H_0 \oplus H_0^{\perp}$ is the G-module direct sum.)
- **8.5.** Let G be a locally compact group, and let $1 \leq p < \infty$. Show that $C_c(G)$ is a dense subspace of $L^p(G)$. (This result was used at the lecture when we constructed the regular representation of G on $L^p(G)$.)
- **8.6.** Define the left regular representation λ of a locally compact group G on $L^{\infty}(G)$ in exactly the same way as on $L^{p}(G)$ $(1 \leq p < \infty)$. Is λ necessarily continuous? Is the restriction of λ to $C_{b}(G)$ or to $C_{0}(G)$ continuous?
- **8.7.** Let G be a locally compact group. Construct a unitary isomorphism between the left and right regular representations of G on $L^2(G)$.
- **8.8.** (a) Let S be a locally compact Hausdorff topological space equipped with a continuous action $G \times S \to S$ of a locally compact group G. Suppose that μ is a G-invariant Radon measure on S (i.e., $\mu(xB) = \mu(B)$ for each Borel set $B \subset S$ and each $x \in G$). Prove that the formula $(\pi(x)f)(s) = f(x^{-1}s)$ ($x \in G$, $s \in S$, $f \in L^2(S, \mu)$) determines a continuous representation π of G on $L^2(S, \mu)$.
- (b) Let G = SU(2) act on the sphere $S = S^3 \subset \mathbb{C}^2$ tautologically, and let π denote the respective representation of G on $L^2(S,\mu)$, where μ is the standard rotation-invariant measure. Construct a unitary isomorphism between π and the left regular representation of G.
- **8.9.** Show that $SL(2,\mathbb{R})$ has no finite-dimensional unitary representations except for the trivial one. Hint. Conjugate the matrix $A(t) = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$ by the matrix $\begin{pmatrix} n & 0 \\ 0 & 1/n \end{pmatrix}$ $(t \in \mathbb{R}, n \in \mathbb{N})$, then apply a unitary finite-dimensional representation π , and look at the spectrum of $\pi(A(t))$.
- **8.10.** Let G be the Heisenberg group (see Exercise 5.9). Define a representation π of G on $L^2(\mathbb{R})$ by

$$\left(\pi \left(\begin{smallmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{smallmatrix}\right) f\right)(x) = e^{2\pi i (bx+c)} f(x+a).$$

Show that π is unitary and irreducible. Is it algebraically irreducible?

Hint. If $H_0 \subset L^2(\mathbb{R})$ is a closed G-submodule, then H_0 is invariant under translations and under multiplication by unitary characters of \mathbb{R} . Deduce that H_0 is invariant under convolution with functions belonging to $L^1(\mathbb{R})$ and under multiplication by functions in $C_0(\mathbb{R})$.

8.11. Let H denote the space of functions $f: \mathcal{H} \to \mathbb{C}$ that are holomorphic on the upper half-plane $\mathcal{H} = \{z \in \mathbb{C} : \operatorname{Im} z > 0\}$ and have the property that $|f|^2$ is Lebesgue integrable on \mathcal{H} . We endow H with the inner product inherited from $L^2(\mathcal{H})$. Define a representation π of $\operatorname{SL}(2,\mathbb{R})$ on H by

$$\left(\pi \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) f\right)(z) = (-bz+d)^{-2} f\left(\frac{az-c}{-bz+d}\right).$$

Show that π is unitary and irreducible. Is it algebraically irreducible?

Hint. Show that each closed $SL(2,\mathbb{R})$ -submodule $H_0 \subset H$ contains a function f such that $f(i) \neq 0$. Then calculate the integral

 $\int_0^{2\pi} e^{-2i\varphi} \pi \left(\cos\varphi \sin\varphi \atop -\sin\varphi \cos\varphi \right) f \, d\varphi$

by using residues.