7.1. Let G be a locally compact group, and let $\chi: G \rightarrow \mathbb{R}_{>0}$ be a continuous homomorphism. Show that there exists a unique (up to a positive constant) positive Radon measure on G such that for each Borel set $B \subset G$ we have $\mu(x B)=\chi(x) \mu(B)$. (Hint: express μ in terms of a Haar measure on G.)
7.2. Let $p \in \mathbb{N}$ be a prime number. Show that the following definitions of the field \mathbb{Q}_{p} of p-adic numbers and of the ring \mathbb{Z}_{p} of p-adic integers are equivalent:
(i) $\mathbb{Z}_{p}=\lim \mathbb{Z} / p^{n} \mathbb{Z}, \mathbb{Q}_{p}$ is the field of fractions of \mathbb{Z}_{p}.
(ii) \mathbb{Q}_{p} is the completion of \mathbb{Q} w.r.t. the p-adic norm $|\cdot|_{p}$ given by $|x|_{p}=p^{-r}$, where $x=p^{r} a / b \in$ $\mathbb{Q} \backslash\{0\}, a \in \mathbb{Z}, b \in \mathbb{N}, p \nmid a, p \nmid b ; \mathbb{Z}_{p}=\left\{x \in \mathbb{Q}_{p}:|x|_{p} \leqslant 1\right\}$.
(iii) \mathbb{Q}_{p} consists of all formal expressions of the form $x=\sum_{k=n}^{\infty} a_{k} p^{k}$, where $n \in \mathbb{Z}$ and $a_{k} \in$ $\{0,1, \ldots, p-1\} ; \mathbb{Z}_{p}=\left\{x \in \mathbb{Q}_{p}: a_{k}=0 \forall k<0\right\}$. (Define algebraic operations on such formal expressions! What is $|x|_{p}$ if x has the above form?)
Show that the projective limit topology on \mathbb{Z}_{p} defined in (i) agrees with the norm topology defined in (ii). Prove that \mathbb{Z}_{p} is compact and that \mathbb{Q}_{p} is locally compact.
7.3. Let μ denote the Haar measure on \mathbb{Q}_{p} normalized in such a way that $\mu\left(\mathbb{Z}_{p}\right)=1$. Show that
(a) $\mu\left(\mathbb{B}_{p^{k}}(x)\right)=p^{k}$, where $\mathbb{B}_{p^{k}}(x)$ is the closed ball of radius $p^{k}(k \in \mathbb{Z})$ centered at $x \in \mathbb{Q}_{p}$.
(b) For each Borel set $B \subset \mathbb{Q}_{p}$ we have

$$
\mu(B)=\inf \left\{\sum_{i=1}^{\infty} p^{k_{i}}: B \subset \bigcup_{i=1}^{\infty} \mathbb{B}_{p^{k_{i}}}\left(x_{i}\right)\right\}
$$

7.4. Let $G=(\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{N}}$ be the product of countably many copies of $\mathbb{Z} / 2 \mathbb{Z}$, and let μ denote the normalized Haar measure on G.
(a) Calculate $\mu(U)$ for a basic open set $U=\prod_{i=1}^{\infty} U_{i}$, where $U_{i}=\mathbb{Z} / 2 \mathbb{Z}$ for all but finitely many i.
(b) Define $f: G \rightarrow[0,1]$ by $f\left(a_{1}, a_{2}, \ldots\right)=\sum_{i} a_{i} 2^{-i}$. Show that f is onto and that $f^{-1}(x)$ is one point unless x is a dyadic rational, in which case $f^{-1}(x)$ consists of two points. Prove that the image of μ under f is the Lebesgue measure on $[0,1]$.
(c) Define $h: G \rightarrow[0,1]$ by $h\left(a_{1}, a_{2}, \ldots\right)=\sum_{i} 2 a_{i} 3^{-i}$. Show that h is a homeomorphism of G onto the Cantor set. Prove that the image of μ under h is the Lebesgue-Stieltjes measure on $[0,1]$ associated to the Cantor function.
7.5. Let G be a locally compact group, and let μ be a positive Radon measure on G.
(a) Given a continuous function $f: G \rightarrow \mathbb{R}_{\geqslant 0}$, define a Radon measure $f \cdot \mu$ on G by $\langle f \cdot \mu, g\rangle=\langle\mu, f g\rangle$ $\left(g \in C_{c}(G)\right)$. Show that for each $x \in G$ we have $L_{x}(f \cdot \mu)=L_{x} f \cdot L_{x} \mu$, where $L_{x} f$ and $L_{x} \mu$ are the left translates of f and μ, respectively. Prove a similar formula for the right translates.
(b) Define a Radon measure $S \mu$ on G by $\langle S \mu, g\rangle=\langle\mu, S g\rangle\left(g \in C_{c}(G)\right)$, where $(S g)(x)=g\left(x^{-1}\right)$ $(x \in G)$. Show that for each continuous function $f: G \rightarrow \mathbb{R}_{\geqslant 0}$ we have $S(f \cdot \mu)=S f \cdot S \mu$.
7.6. Let G be a real Lie group. Show that the modular character Δ of G is given by $\Delta(x)=$ $\left|\operatorname{det} \mathrm{Ad}_{x^{-1}}\right|$, where Ad is the adjoint representation of G.
7.7. Calculate the modular character of the " $a x+b$ " group (see Exercise 5.8).
7.8. Show that $\mathrm{SL}(2, \mathbb{R})$ is unimodular. (Hint: you do not need an explicit formula for the Haar measure on $\operatorname{SL}(2, \mathbb{R})$.)

