7.1. Let G be a locally compact group, and let $\chi: G \to \mathbb{R}_{>0}$ be a continuous homomorphism. Show that there exists a unique (up to a positive constant) positive Radon measure on G such that for each Borel set $B \subset G$ we have $\mu(xB) = \chi(x)\mu(B)$. (*Hint:* express μ in terms of a Haar measure on G.)

7.2. Let $p \in \mathbb{N}$ be a prime number. Show that the following definitions of the field \mathbb{Q}_p of *p*-adic numbers and of the ring \mathbb{Z}_p of *p*-adic integers are equivalent:

- (i) $\mathbb{Z}_p = \underline{\lim} \mathbb{Z}/p^n \mathbb{Z}, \mathbb{Q}_p$ is the field of fractions of \mathbb{Z}_p .
- (ii) \mathbb{Q}_p is the completion of \mathbb{Q} w.r.t. the *p*-adic norm $|\cdot|_p$ given by $|x|_p = p^{-r}$, where $x = p^r a/b \in \mathbb{Q} \setminus \{0\}, a \in \mathbb{Z}, b \in \mathbb{N}, p \nmid a, p \nmid b; \mathbb{Z}_p = \{x \in \mathbb{Q}_p : |x|_p \leq 1\}.$
- (iii) \mathbb{Q}_p consists of all formal expressions of the form $x = \sum_{k=n}^{\infty} a_k p^k$, where $n \in \mathbb{Z}$ and $a_k \in \{0, 1, \dots, p-1\}; \mathbb{Z}_p = \{x \in \mathbb{Q}_p : a_k = 0 \ \forall k < 0\}$. (Define algebraic operations on such formal expressions! What is $|x|_p$ if x has the above form?)

Show that the projective limit topology on \mathbb{Z}_p defined in (i) agrees with the norm topology defined in (ii). Prove that \mathbb{Z}_p is compact and that \mathbb{Q}_p is locally compact.

7.3. Let μ denote the Haar measure on \mathbb{Q}_p normalized in such a way that $\mu(\mathbb{Z}_p) = 1$. Show that

- (a) $\mu(\mathbb{B}_{p^k}(x)) = p^k$, where $\mathbb{B}_{p^k}(x)$ is the closed ball of radius p^k $(k \in \mathbb{Z})$ centered at $x \in \mathbb{Q}_p$.
- (b) For each Borel set $B \subset \mathbb{Q}_p$ we have

$$\mu(B) = \inf \left\{ \sum_{i=1}^{\infty} p^{k_i} : B \subset \bigcup_{i=1}^{\infty} \mathbb{B}_{p^{k_i}}(x_i) \right\}.$$

7.4. Let $G = (\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}}$ be the product of countably many copies of $\mathbb{Z}/2\mathbb{Z}$, and let μ denote the normalized Haar measure on G.

(a) Calculate $\mu(U)$ for a basic open set $U = \prod_{i=1}^{\infty} U_i$, where $U_i = \mathbb{Z}/2\mathbb{Z}$ for all but finitely many *i*.

(b) Define $f: G \to [0,1]$ by $f(a_1, a_2, \ldots) = \sum_i a_i 2^{-i}$. Show that f is onto and that $f^{-1}(x)$ is one point unless x is a dyadic rational, in which case $f^{-1}(x)$ consists of two points. Prove that the image of μ under f is the Lebesgue measure on [0, 1].

(c) Define $h: G \to [0,1]$ by $h(a_1, a_2, \ldots) = \sum_i 2a_i 3^{-i}$. Show that h is a homeomorphism of G onto the Cantor set. Prove that the image of μ under h is the Lebesgue-Stieltjes measure on [0,1] associated to the Cantor function.

7.5. Let G be a locally compact group, and let μ be a positive Radon measure on G.

(a) Given a continuous function $f: G \to \mathbb{R}_{\geq 0}$, define a Radon measure $f \cdot \mu$ on G by $\langle f \cdot \mu, g \rangle = \langle \mu, fg \rangle$ $(g \in C_c(G))$. Show that for each $x \in G$ we have $L_x(f \cdot \mu) = L_x f \cdot L_x \mu$, where $L_x f$ and $L_x \mu$ are the left translates of f and μ , respectively. Prove a similar formula for the right translates.

(b) Define a Radon measure $S\mu$ on G by $\langle S\mu, g \rangle = \langle \mu, Sg \rangle$ $(g \in C_c(G))$, where $(Sg)(x) = g(x^{-1})$ $(x \in G)$. Show that for each continuous function $f: G \to \mathbb{R}_{\geq 0}$ we have $S(f \cdot \mu) = Sf \cdot S\mu$.

7.6. Let G be a real Lie group. Show that the modular character Δ of G is given by $\Delta(x) = |\det \operatorname{Ad}_{x^{-1}}|$, where Ad is the adjoint representation of G.

7.7. Calculate the modular character of the "ax + b" group (see Exercise 5.8).

7.8. Show that $SL(2,\mathbb{R})$ is unimodular. (*Hint:* you do not need an explicit formula for the Haar measure on $SL(2,\mathbb{R})$.)