5.1. Let $(X_i)_{i \in I}$ be a family of topological spaces. Show that $\prod_{i \in I} X_i$ is locally compact if and only if each X_i is locally compact and only finitely many of the X_i 's are noncompact.

5.2. Show that the counting measure on a nondiscrete Hausdorff topological space is not a Radon measure.

5.3. Let X be a locally compact, σ -compact Hausdorff topological space. Show that each outer Radon measure on X is inner regular on all Borel sets.

5.4. Let X be a locally compact, second countable Hausdorff topological space. Show that each Borel measure on X that is finite on compact sets is a Radon measure.

5.5. Let X be a locally compact topological space, and let $C_c(X)$ denote the space of all continuous compactly supported functions on X. Given a compact set $K \subset X$, let $C_K(X) = \{f \in C_c(X) : \text{supp } f \subset K\}$. We endow $C_K(X)$ with the topology generated by the sup-norm $||f|| = \sup_{x \in K} |f(x)|$. Show that every positive linear functional $I: C_c(X) \to \mathbb{C}$ is continuous on $C_K(X)$, for each compact set $K \subset X$. (Equivalently, this means that I is continuous w.r.t. the inductive limit topology on $C_c(X) = \varinjlim_K C_K(X)$.) Of course, you are not allowed to use the Riesz-Markov-Kakutani theorem, otherwise the exercise would be trivial...

5.6. Give an example of a locally compact group G and a left uniformly continuous function $f: G \to \mathbb{C}$ that is not right uniformly continuous.

5.7. Find explicitly the left and the right Haar measures on $GL(n, \mathbb{R})$. (You can find an answer in many books, and you can easily check that it works, but I recommend you to deduce the formula for the Haar measure by using the method that was discussed at the lecture in the context of arbitrary Lie groups.)

5.8 (the "ax + b" group). Let G be the group of all matrices of the form $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$, where $a \in \mathbb{R}^{\times}$ and $b \in \mathbb{R}$ (this group is isomorphic to the group of all affine transformations $x \mapsto ax + b$ of \mathbb{R}). Find explicitly the left and the right Haar measures on G. (You can find an answer in many books, and you can easily check that it works, but I recommend you to deduce the formula for the Haar measure by using the method that was discussed at the lecture in the context of arbitrary Lie groups.)

5.9 (the Heisenberg group). Let G be the group of all matrices of the form $\begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}$, where $a, b, c \in \mathbb{R}$. Find explicitly the left and the right Haar measures on G. (You can find an answer in many books, and you can easily check that it works, but I recommend you to deduce the formula for the Haar measure by using the method that was discussed at the lecture in the context of arbitrary Lie groups.)